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Abstract

Hyperspectral cameras make images in hundreds or thousands of spectral channels.
Due to low spatial resolution, spectra measured by such cameras are mixtures of spectra
of materials in the scene. The reverse process in which materials (called endmembers) are
estimated is called hyperspectral unmixing. Unmixing is challenging due to model un-
derspecification, observation noise, endmember variability and high dimensionality. The
main focus of this thesis is understanding the statistical assumptions, derivations and
implementation details of the geometrical and Bayesian approaches for unmixing. For the
geometrical approach we mainly focus on Berman’s ICE algorithm. For the Bayesian ap-
proach we focus on Arngren’s BayesNMF-Vol algorithm. We start by defining the linear
mixing model. Then we derive the maximum likelihood estimators for the endmembers
and abundances. We show the equivalence between maximizing this log-likelihood func-
tion and minimizing the objective function of the ICE algorithm. We further analyze
every detail of the minimization process of this function. The limitations drive us to
more complex approaches. That is why we subsequently put the unmixing problem into
a Bayesian framework. Solving for the posterior calls for custom made Gibbs samplers
which we cover in great detail. Finally, the algorithm characteristics are illustrated using
synthetic and real data.

The most important original contributions of this work are: (1) the in-depth elaborate
analysis of Berman’s ICE and Arngren’s BayesNMF-Vol algorithm, with original deriva-
tions and insights that promote understanding of these methods and their limitations; (2)
a novel unmixing algorithm, dubbed ICE-S, that extends the ICE algorithm with spatial
information and (3) an original R-framework for the analysis of hyperspectral images,
build from ground up and made available as open source code.



Preface

I started working on a topic of deep learning in image pixel classification mainly as a
way to learn more about machine learning approaches that I found lacking in the excellent
Master of Statistical Data Analysis programme at the University of Ghent. The purpose
was to associate each pixel of a hyperspectral image with a class, for example water, brick,
grass, etc. Only about 5 % of the image was labeled by a human. The rest of the pixels
were for the algorithm to label. The deep learning approaches were mainly focused on
prediction, and as such, ’anything goes’. I understood why a logistic regression classifier
was a good fit, and even a 1-layer neural network – because it allowed for multiple different
pixel-spectra to be associated with the same class – but the state-of-the art approaches did
lots of very strange things that apparently worked better than these classic approaches.
But why? Were they modeling human error? A pixel in the middle of an ocean could be
composed of plastic too, like from a small buoy. If I was able to somehow decompose this
pixel in plastic and water, wouldn’t that make a better classifier? Little did I know that
behind this decomposition there was more than 25 years of research called hyperspectral
unmixing. And that is how this thesis was born.

I wish to thank my promoter Prof. Aleksandra Pizurica for the constant encourage-
ments, suggestions, follow up and multiple readthroughs, Prof. Hongyan Zhang for intro-
ducing me to the problem of hyperspectral pixel classification and Prof. Dries Benoit for
explaining me conceptually the reason behind the intrinsic regularization of the Bayesian
approach.
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Chapter 1

Introduction

In this thesis our main focus is understanding the methods used in hyperspectral unmix-
ing. This will lead us to some new insights into the current methods, their limitations and
some extensions and improvements aimed at overcoming these limitations. We start from
the following questions: What is a hyperspectral image? How does it facilitate material
detection? What is hyperspectral unmixing? And most importantly, how is it done?

In this Chapter we first learn about the hyperspectral image. Then we look at how
materials (that compose the image) leave mixed “fingerprints” in the pixel spectra. Our
goal is to extract them. But to be able to extract them, we first need a mathematical
model of how they are mixed. Such a mathematical model is defined in Section 1.2. Once
we have the mixing model, we explain the unmixing process in Section 1.3 together with
some state-of-the-art in the field. Subsequently, in Section 1.4, we give some examples
of unmixing applications. In Section 1.5 we cover the notational conventions used in this
thesis. And finally in Section 1.6 we give an overview of the subsequent chapters and
main contributions.

So what will one learn from these other chapters? Well, if you read the original papers
you will note that they are quite succinct on various important topics. For example, when
Berman [5] defines the objective function which is to be minimized, he just notes that
it follows from the mixing model. We actually derive it and show which assumptions he
makes underway. Also, Berman explains the minimization process in a few sentences. But
the actual minimization of the constrained quadratic function is much more challenging
because the positive-definiteness of the Hessian matrix can not always be guaranteed.
Similarly, we find that in the Bayesian model the key underlying assumption is a directed
acyclic graph (DAG) with the Markov property without which none of the derivations for
the Gibbs sampler can be made. Furthermore, sampling from a degenerate distribution
is a challenge in its own. But the original papers put hardly any emphasis on this. So in
summary, you will find here all the derivations and nuances which were omitted from the
original papers. This will definitely improve the understanding of the discussed unmixing
approaches.

Apart from these elaborations and small improvement suggestions, one will also find
our own contribution: the extension of the ICE algorithm with spatial information, which
we dub ICE-S. But before we delve into the details, we review briefly the basic concepts
of hyperspectral imaging.
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1.1 Hyperspectral imaging

A hyperspectral image can be seen as an extension of an ordinary RGB image. Whereas
an RGB image consists of three bands, red green and blue taken at 485 nm, 550 nm and
645 nm respectively, a hyperspectral image consists of many more (several tens to several
hundreds) bands extended beyond the visible spectrum. It is usually represented as a 3D
data cube such as the one depicted in Fig. 1.1.

Figure 1.1: This sample data cube [14] was acquired with AVIRIS instrument on August
20, 1992 when it was flown on a NASA ER-2 plane at an altitude of 20,000 meters over
Moffett Field, California, at the southern end of the San Francisco Bay. The top of the
cube is a false-color image made to accentuate the structure in the water and evaporation
ponds on the right. Also visible on the top of the cube is the Moffett Field airport. The
sides of the cube are slices showing the edges of the top in all 224 of the AVIRIS spectral
bands. The tops of the sides are in the visible part of the spectrum (400 nm), and the
bottoms are in the infrared (2500 nm). The sides are pseudo-color, ranging from black
and blue (low response) to red (high response).

A hyperspectral image is not to be confused with a multispectral image. For example,
the Landsat Thematic Mapper attached to the Landsat 4 and 5 satellites detects only 6
bands (and extra one on a much higher spatial resolution). Researchers use the ratios
of those bands to discriminate surface materials with limited accuracy. Hyperspectral
images contain many more narrow and continuous bands. This allows better accuracy in
analysis. In [11] one can find a more elaborate comparison.

1.2 Spectral mixing

Materials leave unique “fingerprints” in the electromagnetic spectrum, known as spectral
signatures. These signatures enable identification of the materials that make up the image.
Fig. 1.2 shows this. Notice that there are pure and mixed pixels. For example, the middle
emphasized pixel consists entirely of water, while the top emphasized pixel is composed
of soil and rock. The latter is due to the spatial resolution of the sensor.
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Figure 1.2: Hyperspectral image decomposition [8].

Hyperspectral unmixing is any process that separates the pixel spectra from a hyper-
spectral image into a collection of constituent spectral signatures, called endmembers, and
a set of fractional abundances, one set per pixel. To relate to Fig. 1.2, the top emphasized
pixel is composed of two endmembers (soil and rocks) in abundances of 60 and 40 percent
respectively.

1.2.1 Linear mixing model

The linear mixing model (LMM) defines mathematically how the spectra of the materials
in a scene are mixed together in a pixel. It assumes that the incident light-rays interact
only with the material on which they scatter. In this case, the mixing occurs within
the instrument itself due to the fact that the spatial resolution is not fine enough. This
mechanism is shown in Fig. 1.3.

Under such a linear mixture, the relative area of the endmembers corresponds to their
abundances. Thus the measured spectrum at a pixel xn ∈ RB

+ is a weighted average of
the radiances of the materials (i.e. endmembers em) present at the pixel. We write this
as follows:

xn = wn1e1 + ...+ wnMeM + ε

=

(
M∑
m=1

wnmem

)
+ ε

= Ewn + ε

(1.1)

where M denotes the number of endmembers in the image; E = [e1, · · · , eM ] ∈ RB×M
+

and wn ∈ RM×1
+ is a column vector of endmember proportions in xn. The noise ε is

usually taken as N (0, σ2I) distributed (i.e. the error terms are assumed independent).
Note also that

9



Figure 1.3: Linear mixing mechanics. Sunlight scattered by three materials denoted by
{e1, e2, e3} in a scene is incident on a sensor-pixel x that measures radiance in B bands.

M∑
m=1

wnm = |wn|1 = 1 (1.2)

together with non-negativity of wnm is called the closure or convex geometry constraint
[7]. This implies that wn lies on a unit (M − 1)-simplex.

Eq. 1.1 can be further generalized to all pixels:

X = WET + E (1.3)

where matrix X = [x1, . . . ,xN ]T ∈ RN×B
+ of the observed spectra and matrix W =

[w1, . . . ,wN ]T ∈ RN×M
+ whose nth row represents the endmember concentration profile

of nth sample xi.

Multidimensional simplex representation

The non-negativity and sum-to-unity constraints in Eq. 1.2 imply that xn are contained
within a simplex where the endmembers em form the vertices. This is shown in Fig 1.4.
The fact that some xn fall out of the simplex is due to noise. Furthermore, depending
on the source, the image may not contain pure pixels (i.e. pixels constituted by only one
endmember/material). Fig. 1.4b is such an example.
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(a) Full mixing (b) Partial mixing

Figure 1.4: 2500 pixels xi ∈ R2
+ represented in function of their band. The observed pixels

may not span the entire simplex due to the mixing of the endmembers. This is shown in
(b) where the bottom-left endmember is never available in pure form in the image. Such
mixing is called partial.

1.2.2 Nonlinear mixing model

Nonlinear mixing is usually due to physical interactions (i.e. reflections and absorptions)
between the light scattered by multiple materials in the scene. We do not consider non-
linear mixing in this thesis. This is partly justified by the fact that linear mixing is an
acceptable approximation of the light scattering mechanisms in many real scenarios [8].

1.3 Hyperspectral unmixing process

The hyperspectral unmixing process is a step-by-step procedure of extracting the materials
(i.e. endmember spectra) from hyperspectral images. This process usually consists of the
following steps:

1. Atmospheric correction by which atmospheric effects are compensated by converting
radiance to reflectance data. How this is done is shown in Section 5.1, using a real
data example.

2. Dimensionality reduction is sometimes done for performance reasons due to the
high number of bands. The most common way is principal component analysis
(PCA). Sometimes other, more theoretically suitable techniques are used to reduce
dimensionality. For example, the minimum noise fraction (MNF) transform which
finds uncorrelated linear transformations that maximize the signal-to-noise ratio.
We do not consider these techniques in this thesis and always use the complete
dataset.

3. Unmixing/Inversion is the last step in which we identify the endmembers in the
scene and the fractional abundances in each pixel. This step requires that we un-
derstand how endmember spectra are mixed in each pixel. In this thesis we assume
the linear mixing model (LMM, cf. Section 1.2.1). Unmixing is thus the reverse pro-
cess of Eq. 1.1 under non-negativity and sum-to-one constraints. If we consider the
matrix formulation as in Eq. 1.3, then this process is a form of non-negative matrix
factorization (NMF) with the additional sum-to-one constraint for the abundances.
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The unmixing step is at the core of this thesis. It is thus appropriate to start with an
overview of the present unmixing methods.

1.3.1 Unmixing methods

Bioucas-Dias e.a. [8] give a recent overview of unmixing algorithms. They divide the
approaches in three general classes: geometric, statistical and sparse. The following gives
a brief overview.

Geometrical methods

The algorithms in this class are based on the minimal volume spanned by the endmembers.
Broadly speaking, they differ in whether pure pixels are assumed or not. A popular
algorithm of the former kind is the N-FINDR algorithm [26]. It is based on the idea that
the volume defined by a simplex formed by the purest pixels, is larger than any other
volume defined by any other combination of pixels. This algorithm finds the set of pixels
defining the largest volume by inflating a simplex inside the data. It performs well under
full mixing, but not so much under partial mixing (cf. Fig. 2.1a), which brings us to
the more general class of geometrical volume constrained approaches. These approaches
seek an endmember matrix E that minimizes the volume of the simplex defined by its
columns. Since the pure pixels are no longer assumed, this results in a more difficult
nonconvex optimization problem. One such algorithm is the ICE algorithm [5], [6], [7]
which is extensively discussed in Chapter 2.

Statistical methods

Statistical methods allow more precise modeling but come with a price of higher com-
putational complexity. Especially the Bayesian approaches are popular. They have the
ability to model statistical variability and to impose priors that can constrain solutions
to physically meaningful ranges, and even regularize solutions. Common estimators are
maximum a posteriori (MAP) estimators. Due to the complexity of resulting joint poste-
rior, Markov chain Monte Carlo (MCMC) algorithms are used. These algorithms mainly
differ by the choice of priors assigned to the unknown parameters.

In Chapter 3 we cover in great detail the BayesNMF-Vol [1], [3] algorithm which can
be seen as a translation of the ICE algorithm into a Bayesian framework. Published in
2009, it is also one of the first Bayesian frameworks for hyperspectral unmixing. In the
following years there was lot of research on this topic. For example this relatively new
paper by Halimi e.a. [17] from 2015 is several layers more complex than the one described
here. Halimi does not only incorporate the non-negativity and sum-to-one constraints
into the model (which is an endeavor on its own), but goes further to model spatial
information and spectral endmember variability (SEV) which is intrinsic [24] to remotely
sensed spectral images.

Sparse regression methods

These methods are mostly semi-supervised in the sense that a large amount of spectra is
fed into the model. The sparsity is related to the amount of endmembers in the solution
(cf. [25]). There are also sparse unsupervised methods. We do not consider sparse
methods in this thesis.
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1.3.2 Spatial information

Most of de algorithms in the three classes ignore the spatial information that could im-
prove the unmixing process. Bioucas-Dias e.a. [8] note though that incorporating this
information into a model has recently motivated the development of a new class of al-
gorithms. These algorithms exploit both the spatial and spectral features contained in
an image. We do not cover these algorithms, but we do extend the ICE algorithm with
spatial regulation. To our knowledge this has not been done before.

1.4 Applications

Higher spectral resolution of hyperspectral cameras enables material identification through
spectroscopic analysis. This facilitates countless applications that require identifying ma-
terials in scenarios unsuitable for classical spectroscopic analysis. For example, hyper-
spectral cameras such as AVIRIS contribute significantly to earth observation and remote
sensing. In Chapter 5 we base our analysis on one such real dataset.

The applications are not limited to remote sensing. Hyperspectral images can be
found in any other domain where material identification through spectroscopic analysis
is desired. Bioucas-Dias [8] refers to several domains such as food safety, pharmaceutical
process monitoring and quality control, biomedical, industrial, biometric, and forensic
applications.

1.5 Notation and conventions

Variable scalars are written in lowercase italics (a, b), column vectors in lowercase boldface
italics (a, b) and matrices in uppercase boldface letters (A, B). Transposition is denoted
by the superscript T (aT , AT ).

For notational brevity, the columns or rows of a N ×M matrix A are represented as
a column vector a where the subscript denotes the origin: an := (An:)

T and am := A:m.
Similarly, anm := An:m is the (n,m)-th component of matrix A. We use tilde (̃ ) to denote
removed indices such that Aã:̃b denotes the A matrix with row a and column b removed.
Similarly anm̃ denotes the vector an extracted from A with the m-th element removed.

The probability density function of a conventional distribution we denote in calli-
graphic style, like N for normal distribution. For other distributions we use the generic
lowercase letter f which is determined by its argument or subscript, or both. For example,
fX|Y (x|y) = f(x|y) = fX|Y . The latter form we use mainly in text to refer to a specific
function, while the middle form is used in equations where we keep the capital letters
such as f(X|Y ). The former and most correct notation is omitted for the sake of brevity.

Some special matrices and vectors include the identity matrix IM with subscript de-
noting its order; a vector of ones 1, and the Moore-Penrose (MP) inverse of a matrix A,
which we write as A†. The arg mina of some function is denoted by a∗.

Some important constants like the number of bands B, the number of endmembers M
and the number of pixels N are written in uppercase italics. We use the same notation
for important functions like the objective function L and the regularization functions V
and S.

For matrix differential calculus we use the conventions layed out in [21]. Derivations
are given only if they differ from the original papers.
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1.6 Thesis organization and contributions

The following chapters are organized as follows. In Chapter 2 we explain Berman’s [5]
ICE algorithm, which is perhaps the most typifying of the geometric class of algorithms.
This results in a few small improvements: The closed form solution for E∗ in Section 2.3.4
and stabilization of the objective function in Section 2.4.1. Subsequently, in Section 2.5
we propose a spatial information extension for the ICE algorithm, which we dub ICE-S.
The extra parameter ν of ICE-S allows for smoother abundance maps, but does not seem
to have much effect on the resulting endmembers. We also notice multiple local minima
in the objective function and try to map them by running ICE-S over its whole parameter
range in Section 4.3.2.

In Chapter 3 we explain the Bayesian framework and the MCMC solution for hyper-
spectral unmixing, which is mainly due to Arngren e.a. [1]. Their work, back in 2009, was
one of the pioneering in the field and their insights are fundamental for all subsequent
Bayesian unmixing models. That is why we put a considerable amount of effort into
understand it.

Subsequently, we run these three algorithms on a synthetic (Chapter 4) and a real
(Chapter 5) dataset and compare the results. We end with a small conclusion in Chapter
6. In the Appendices one will find all the derivations that are omitted from the corpus, and
are not included in the original papers. There, one will also find the link and explanation
of the source code that accompanies this thesis.
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Chapter 2

ICE algorithm and extensions

Berman’s iterated constrained endmembers (ICE) algorithm [5], [6], [7] is greatly inspired
by Winters N-FINDR algorithm [26] which finds the M-simplex of maximum volume con-
strained to lie within the data cloud and Craig’s algorithm [13] which finds the minimum
volume M-simplex enclosing the data cloud. The ICE algorithm finds a M-simplex which
has Craig’s solution as its limiting case, and where the size of the simplex is controlled
with a hyper-parameter µ. The comparison is shown in Fig. 2.1.

(a) (b)

Figure 2.1: Comparison of Winter’s N-FINDR, Craig’s algorithm and Berman’s ICE
algorithm for finding endmembers. Image taken from [7].

In Section 2.1 we explore the assumptions of the objective function central to the ICE
algorithm. More precisely we derive it from LMM (Section 1.2.1) based on the Likelihood
Principle. This is instructive as no such foundation has been found in the original papers.
Once we learn that the objective function L is underspecified, we introduce in subsequent
section a regularization term V which is proportional to the volume of the endmember
simplex as a remedy. In Section 2.3 we explore in great detail every step in the so-called
ALS algorithm which is used to minimize L. This Section also goes much deeper into
implementation details than the original papers. Once done, we discuss two peculiarities
of the ICE algorithm: omission of σ2 and lurking imbalance due to large B – the number of
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bands. And lastly in Section 2.5 we extend the ICE algorithm with spatial regularization
and an extra hyper-parameter ν which controls it. To our knowledge this has not been
tried before and is a creative contribution of this thesis.

2.1 Objective function

We start by rewriting xn from Eq. 1.1 in each component xnb:

xnb = wT
neb + ε

∼ N (wT
neb, σ

2)
(2.1)

The probability density function of xnb is thus:

f(xnb | wn, eb, σ
2) =

1√
2πσ2

e−
1

2σ2
(xnb−wT

n eb)
2

(2.2)

Assuming that all pixel components xnb are independent we can write the joint distri-
bution as follows:

f(x11, . . . , xNB | E,W , σ2) = f(x11 | w1, e1, σ
2)× · · · × f(xNB | wN , eB, σ

2)

=
N∏
n=1

B∏
b=1

f(xnb | wn, eb, σ
2)

= `(E,W , σ2 |X)

(2.3)

Now, from the Likelihood Principle all we have to do is maximize `(E,W , σ2 |X). To
facilitate the computation (i.e. to get rid of the product which is likely to cause numerical
instability for large N and to get rid of the exponent), one usually uses the log-likelihood
function L = log(`). This is justified since the logarithm is a monotonically increasing
function and thus preserves the maximum.

L(E,W , σ2 |X) = log
[
`(E,W , σ2 |X)

]
=

N∑
n=1

B∑
b=1

log
[
f(xnb | wn, eb, σ

2)
]

= −NB log
(√

2πσ2
)
− 1

2σ2

N∑
n=1

B∑
b=1

(
xnb −wT

neb
)2

(2.4)

Now we are ready to define the objective loss function which we wish to minimize.

arg max
E,W ,σ2

L(E,W , σ2 |X) = arg min
E,W ,σ2

−L(E,W , σ2 |X)

= arg min
E,W ,σ2

NB log
(√

2πσ2
)

+
1

2σ2

N∑
n=1

B∑
b=1

(
xnb −wT

neb
)2
(2.5)
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Note that Berman [5] seems to disregard σ2 – without explanation1 – and only considers
E and W . In that case σ2 is considered given and the additive constant NB log(

√
2πσ2)

and positive factor 1/2σ2 can be removed since they have no impact on arg min.

arg max
E,W

L(E,W |X) = arg min
E,W

N∑
n=1

B∑
b=1

(
xnb −wT

neb
)2

= arg min
E,W

L(W ,E, σ2 |X)

(2.6)

The function L(W ,E) we call the loss function or the objective function. At this point
it is instructive to show various ways in which the objective function can be rewritten,
which will prove useful in later manipulations.

L(E,W |X) =
N∑
n

B∑
b

(xnb −wT
neb)

2 =
N∑
n

B∑
b

(xnb − x̂nb)2

= ‖X −WET‖2F = tr
[
(X −WET )T (X −WET )

]
=

N∑
n

(xn −ETwn)T (xn −ETwn)

=
B∑
b

(xb −Web)
T (xb −Web)

(2.7)

2.2 Regularized objective function

Note that objective function L in Eq. 2.7 is ill posed. It will result in the same mini-
mum value as long as all the pixels are within the simplex formed by the vertices of the
endmembers. In that case xnb − x̂nb = 0 ∀n, b and thus L = 0. That is why Berman [5]
proposes a penalized version:

Lreg(E,W ) =
(1− µ)

N
L+ µV (2.8)

Here V acts as a regularization term and is proportional to the volume of the end-
member simplex. µ acts as a hyper-parameter of the model. Division by N is to make
sure that L is independent of the amount of pixels used. To make V independent of the
dimension of the simplex, the summed variance per band b of all the endmembers is used
instead.

1Actually, that is a bit too quick. Berman uses the ICE algorithm mainly on data which is transformed
by means of the minimum noise fraction (MNF) transform. This makes the errors uncorrelated between
MNF bands and with variance 1. The data can still be spatially correlated. Furthermore, MNF transform
tends to produce errors that look Gaussian for low dimensions. [6]
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V =
B∑
b=1

V̂ ar(eb)

=
B∑
b=1

∑M
m=1

[
ebm −

∑M
m=1 ebm
M

]2
M − 1

=
B∑
b=1

eTb (IM − 11T

M
)eb

M − 1

=
SSD

M(M − 1)

(2.9)

Note that Eq. 2.9 gives a direct relation between V and the sum of squared distances
(SSD) of the endmember simplex. A worked out derivation of this relationship can be
found in the Appendix Eq. A.2. Note further that the SSD is also proportional to the
size of the simplex. In summary, the advantage of V to the volume is threefold: it is
independent of M , proportional to the volume and cheaper to compute.

Since Lreg is approximately independent of the sample size N and the number of
endmembers M , it allows for just one value of µ for all datasets. Berman [5], [7] reports
that a value of 0.01 to 0.05 usually gives reasonable solutions after analyzing several dozen
real-world datasets.

2.3 Minimization

Minimization of Lreg is not straightforward. The dimensionality is extremely large. Sup-
pose for example one has an image of N=1000 pixels with B=100 bands and one seeks
M=5 endmembers. Since our function Lreg has matrices E ∈ RB×M

+ and W ∈ RN×M
+ as

arguments, we would have a total of B ×M +N ×M = 100500 parameters to find! And
even if we had a closed-form solution, we still would need to make sure the non-negativity
and sum-to-one constraints are met.

The approach taken by Berman is to split the function in smaller subproblems and
solve them one by one. Berman only gives the closed form solution for e∗b and mentions
that w∗n can be found using quadratic programming as explained in [22, Chapter 16]. In
the following sections we delve into details of how this is actually done.

2.3.1 Coordinate descent

Coordinate descent [27] is based on the idea that the minimization of a multi-variable
objective function f(x) can be achieved by minimizing it along one component of x with
respect to the remaining components at each iteration step. One thus reduces the difficult
full minimization problem to a cycle of much simpler single-variable problems. One starts
with a random initial value:

x0 = (x01, . . . , x
0
n)

Then one iteratively solves the single component optimization problems

xk+1
i = arg min

y∈R
f(xk+1

1 , . . . , xk+1
i−1 , y, x

k
i+1, . . . , x

k
n)
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where the superscript k+ 1 denotes the current iteration cycle. At each step one does
a line search for which f(xk) ≥ f(xk+1) always holds. Overall we get

f(x0) ≥ f(x1) ≥ f(x2) ≥ . . . .

No significant improvement between two iteration cycles implies a stationary point is
reached.

2.3.2 Block coordinate descent

An interesting feature of the objective function Lreg(W ,E) in Eq. 2.8 is that if we only
look at Lreg(wn) and Lreg(eb) with other parameters fixed, then the function in these
parameters is convex. Thus we can minimize efficiently these blocks of parameters one at
a time. Hence the name block coordinate descent. Now let us take a closer look at these
functions and their form.

2.3.3 Minimize Lreg(wn) with fixed E and Wñ:

Assuming fixed E we can rewrite Lreg from Eq. 2.8 in function of wn as follows:

Lreg(W ) =
N∑
n=1

[
(1− µ)

N
||xn −Ewn||22 +

µV

N

]

=
N∑
n=1

Ln,reg(wn)

(2.10)

This shows that each Ln,reg(wn) can be minimized separately sincewn are independent
of each other. Now we rewrite Ln,reg(wn) to quadratic standard form:

Ln,reg(wn) =
(1− µ)

N
(xn −Ewn)T (xn −Ewn) +

µV

N

=

(
(1− µ)xTnxn

N
+
µV

N

)
−wT

n

2(1− µ)ETxn
N

+
1

2
wT
n

2(1− µ)ETE

N
wn

= Cte +wT
na+

1

2
wT
nHwn

(2.11)

Note that the constant term plays no role in minimization. Thus we need to solve the
following constrained quadratic problem:

arg min
wn

wT
na+

1

2
wT
nHwn

subject to
M∑
m=1

wnm = 1 and wnm ≥ 0, m = 1, . . . ,M.

(2.12)

For numerical stability (in case N is large) we can remove the factor 2(1−µ)/N from
both a and H without influencing the minimum.
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Minimizing Lreg(wn) under constraints

Nocedal [22, Ch. 16] describes two approaches for solving such a problem. The first is the
active set method which is inspired by the simplex method from linear programming. In
the simplex method, a solution is searched for along the vertices of the feasible polytope.
Each vertex of such a polytope is a point where all equality, and a subset of inequality
constraints, are active. An inequality constraint such as wnm ≥ 0 is considered active if
it strictly equals zero at that point.

Quadratic problems are more complicated since the solution is not necessarily one of
the vertices, nor does it necessarily lie on the boundary of the polytope. Nonetheless,
searching along the boundary of the polytope is the essence of the active set algorithms.
For this particular problem we have implemented the primal active set method for convex
quadratic problem as described in [22, p. 472].

A second approach is the so called interior-point method. This method is polynomial
time and approaches the solution through the interior of the feasible polytope rather than
working its way around the boundary as the active set method does.

Convexity of Lreg(wn)

Ln,reg(wn) is convex and our minimum is global if H is positive semidefinite. The mini-
mum is unique ifH is positive definite. We know that xTETEx = (Ex)TEx = ||Ex||22 ≥
0 and thus that H is positive semidefinite. If ker(E) = {x | Ex = 0} = {0}, then the
columns of E are linearly independent and strict inequality holds for x 6= 0. Thus H
is positive definite only if the endmembers (i.e. columns) of E are linearly independent!
Since E ∈ RB×M

+ , the latter can only be if M ≤ B. So by having M � B we increase
the chance of having an unique solution for wn. The case where M > B is common
in synthetic images where we limit B = 2 and M = 3 for representational purposes as
in Fig. 1.4. In such cases H is positive semidefinite. If this were an unconstrained
problem, then we would be sure that multiple solutions for wn exist. In the constrained
case this is more complicated. The set of minima for semi-definite H might as well lie
completely outside of the feasible set, so we might still have an unique solution under
active constraints! In other words, in the constrained case, the requirements for a unique
solution are more loose. Specifically [22, Lemma 16.1, p.452], an active set of constraints
A with its corresponding matrix A has a unique solution if ZTHZ is positive definite
where ker(A) = Z. So even if H is positive semi-definite, we still have a chance that the
constrained solution is unique.

Implementation peculiarities

Note that we could run the active set algorithm on the full matrix W since Lreg(W )
is quadratic and convex, but this is dangerous. Nocedal [22, p. 388] notes that the
complexity of an active set method is exponential, i.e. in the linear case there exist
pathological cases for which the simplex method visits every single vertex before reaching
the optimal point. Therefore it is safer to limit the dimensionality of the problem to just
Lreg(wn).

Another implementation peculiarity is the case when ZTHZ is positive semi-definite.
In that case the Karush-Kuhn-Tucker (KKT) matrix is singular and thus there are mul-
tiple solutions for wn. A general approach for solving such singular case is to use the
Moore-Penrose (MP) pseudo-inverse which gives a solution xmin having the smallest norm
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of all possible solutions x. An important thing to note here is that xmin = (wn,λ), where
λ is the vector of Lagrange multipliers. So although xmin has the minimal norm, that
does not imply that wn also has the minimal norm of all possible solutions.

Another issue with MP inverse is its calculation. It is usually computed using singular
value decomposition (SVD). Thus A† = V D−1UT where D−1 is the diagonal matrix
of reciprocal eigenvalues. Very small eigenvalues cause MP inverse instability. On the
other hand, removing small but non-zero eigenvalues causes inexact MP inverse which
eventually results in solutions that might not exactly match the constraints. So although
rare, these situations occur, especially when M > B such as in synthetic images, and
might cause errors of order 1e-8 or even higher.

During the process of implementation and testing we have found an inconsistency in
the active set algorithm for convex QP as described by Nocedal [22, p.472]. Where it
says “obtain Wk+1 by adding one of the blocking constraints to Wk” it should be “obtain
Wk+1 by adding the blocking constraint which corresponds with the smallest αk to Wk”.
This is essential as picking a random blocking constraint when there are multiple blocking
constraints will, result in a wrong minimum for a well-chosen initial feasible point x0.

2.3.4 Minimize Lreg(eb) with fixed W and Eb̃:

Assuming fixed W , using ||X −WET ||2F =
∑B

b=1 ||xb −Web||22 and substituting the
result for V from Eq. 2.9 into Eq. 2.8 we get:

Lreg(E) =
B∑
b=1

[
(1− µ)

N
||xb −Web||22 + µ

eTb (MIM − 11T )eb
M(M − 1)

]

=
B∑
b=1

Lb,reg(eb)

(2.13)

This shows that each Lb,reg(eb) can be minimized separately since eb are independent
of each other. Now we rewrite Lb,reg(eb) in quadratic standard form:

Lb,reg(eb) =
(1− µ)xTb xb

N
− eTb

2(1− µ)W Txb
N

+
1

2
eTb

(
2(1− µ)W TW

N
+

2µ(IM − 11T/M)

(M − 1)

)
eb

= Cte + eTb c+
1

2
eTbGeb

(2.14)

Convexity of Lreg(eb)

The Hessian matrix G is symmetric since it is a sum of two symmetric matrices. G is
also positive semi-definite. To see this we have to look at its matrix parts. eTW TWe =
||We||22 ≥ 0 so W TW is positive semi-definite. That (IM − 11T/M) is also positive
semi-definite follows from xT (IM − 11T/M)x = xT (IM − vvT )x = ‖x‖22 − ‖vTx‖22 =
‖x‖22‖v‖22 − ‖vTx‖22 ≥ 0 where v = 1/

√
M and where the last inequality is due to the

Cauchy-Schwarz inequality. The consequence is that Lb,reg(eb) is convex. In practice, G
is positive definite because to be semi-definite the columns of W have to be dependent
and since N �M this is highly unlikely. At the same time the ker(W TW ) has to be the
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same as ker(IM − 11T/M) = {x | x1 = x2 = · · · = xM} which is even more unlikely. So
in the calculation we can safely use G−1 instead of G†.

Closed solution for eb

The convexity of the problem thus assures us that solving for eb in equation ∂Lb,reg(eb)/∂e
T
b =

cT + eTbG = 0 will result in the global minimum:

arg min
eb

Lb,reg(eb) =

[
W TW + λ

(
IM −

11T

M

)]−1
W Txb (2.15)

with λ = Nµ/[(1− µ)(M − 1)].
But are we not a bit too fast? What about the constraint ebm ≥ 0, ∀b,m? It is a

peculiarity in Berman’s ICE algorithm that it is not enforced. But while it is not enforced,
it is very likely to be satisfied since the endmembers will be within the pixel cloud. And
since the pixel components are all greater or equal to zero, it is safe to assume that the
endmember components will also be.

Closed solution for E

Although Berman [5], [6], [7] does not mention it explicitly, arg minE Lreg(E) can easily
be solved in one go by replacing xb with X and taking the transpose of the result in Eq.
2.15, resulting in:

arg min
E

Lreg(E) = XTW

[
W TW + λ

(
IM −

11T

M

)]−1
(2.16)

This result follows directly from Eq. 2.15 once we recognize that the Lb,reg(eb) are
independent. A more formal derivation based on matrix calculus laws from [21] is given
in Appendix A.2.

2.3.5 The ICE algorithm

In the previous two sections we computed the parameters Ek+1 and W k+1 for one whole
cycle of a coordinate descent. We thus have that Lreg(E

k,W k) ≥ Lreg(E
k+1,W k+1).

Since at each step we are minimizing a quadratic problem, this approach is also called
alternating least squares (ALS). We now describe the full algorithm.

The iteration process is stopped once successive Lreg values are close enough. Berman
[6] reports that a ratio larger than 0.99999 gives sufficiently stable endmember estimates.
Now the obvious question is: does this converge to a global minimum?

2.3.6 Non-Convexity of Lreg

The global minimum is achieved by coordinate descent only if the objective function is
convex. Unfortunately, Lreg as defined in Eq. 2.8 is not convex [6]. There is no formal
proof for this statement. But one can demonstrate this by using different starting points
in the ICE algorithm. For example, if the starting endmember simplex is outside of the
data cloud, the solution will sometimes tend to equal endmembers in the center of the
data cloud. This seems to be a local minimum. An other local minimum seems to be
when the endmembers lie on one straight line within the data cloud. From our conducted
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Algorithm 1 (ICE algorithm)

k ← 1
L(k) ← maximum machine number
Generate a random matrix W (k)

repeat
k ← k + 1
E(k) ← arg minE Lreg(E |W (k−1)) as in Eq. 2.16
for n = 1 to N do
w ← arg minwn Ln,reg(wn | E(k)) as in Eq. 2.12

W
(k)
n: ← (w)T

end for
L(k) ← Lreg(W

(k),E(k)) as in Eq. 2.8
until L(k)/L(k−1) ≥ tol
return E(k) and W (k) as solution;

experiments on synthetic data, it also seems better to start the algorithm with a random
W – instead of a random E – to end up at the global minimum.

Berman’s experience is that endmembers which are pure or almost pure are consis-
tently found, almost independently of the starting point, in the sense that there is little
variation in the solutions. Less pure endmembers are found with greater variation.2

Sampling the solutions while initializing the algorithm with random W also shows
that the chance to end up in a local minima increases with decreasing µ. We will return
to this point in Chapter 4 (Fig. 4.2a), when we sample the solutions over the whole
parameter space of µ.

2.4 Model peculiarities

2.4.1 L dependence on B

During our testing the arg minwn Ln,reg(wn) proved instable for bands B ≥ 100. This was
due to ETE in effect having very large coefficients in case X was not normalized. This
in turn resulted in the KKT matrix having very large and very small eigenvalues (due to
small coefficients of active constraint matrix A), making the KKT matrix computation-
ally singular. This results in numerical instability in the solution of w∗n with the effect of
not complying to the sum-to-one constraint. That is because the small eigenvalue, corre-
sponding to the equality constraint, gets dropped in the MP inverse calculation because
it is too small compared to the others.

The instability can be traced back to L and V being both independent of M and N ,
but not of B. So the larger the B, the larger Lreg will tend to be. This can be mitigated
by dividing Lreg in Eq. 2.8 with B. Our new improved objective function thus becomes:

Limp,B(W ,E) =
(1− µ)

NB
L+

µV

B
(2.17)

The effect is that this divides the factors a and H in Eq. 2.12 by B mitigating the
large eigenvalues without affecting the solution.

2cf. comments at: https://www.researchgate.net/publication/229884791_ICE_A_new_method_

for_the_multivariate_curve_resolution_of_hyperspectral_images
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a =
ETxn
B

, H =
ETE

B
(2.18)

Note that this adjustment has no effect on E∗.

2.4.2 Disregard of σ2

We already noted that Berman does not consider σ2 in the likelihood Eq. 2.4. For the
sake of example, let us add it into Lreg and see what happens.

Limp,σ2(E,W , σ2 |X) = −(1− µ)

NB
L(E,W , σ2 |X) +

µV

B

=
(1− µ)

2σ2NB
‖X −WET‖2F + (1− µ) log

(√
2πσ2

)
+
µV

B

(2.19)

To minimize this we have to make slight adjustments to the ICE algorithm. W ∗

remains the same. For computing E∗ we use the Eq. 2.16 with adjusted λ = 2σ2Nµ/[(1−
µ)(M − 1)]. And finally, σ2∗ = ‖X −WET‖2F/(NB).

Although all the subproblems are convex, the function Lreg is definitely not. From
practical experiments, it seems that there are many local minima.

2.5 Extension with spatial regulation (ICE-S)

2.5.1 Motivation

Suppose you were given two abundance maps of some mineral as in Fig. 2.2. Both
abundance maps contain the same data, but the abundances are ordered differently. If
these two images were both the output for the same material, one would tend to think
that in the right image the algorithm was somehow malconfigured. The left image shows
some configuration, order or a hidden manifold. In the right image the abundances are
randomly spread throughout the image which makes it less likely.

(a) (b)

Figure 2.2: Spatial abundance of a mineral Alunite. The left image (a) is a copy of
Fig. 5.7a – the original abundance. The right image (b) has the same abundance data
randomly ordered.
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We want a regularization that favors the left image, and disfavors the right image.
There are various ways one could do this. The approach chosen here is to model each
pixel with its four neighboring pixels as cliques and compute their variance.

2.5.2 New regularization function S

Thus the variance of an abundance wnm and its neighbors on band m we define as:

Snm = V ar(U [n]
:m ) where U [n] =


wT
n−H

wT
n−1

wT
n

wT
n+1

wT
n+H

 (2.20)

where H denotes the height of the image and is important for the calculation of adja-
cent pixels. Thus the Snm measures the variance between abundances {wn−H,m, wn−1,m,

wn,m, wn+1,m, wn+H,m} as shown in Fig. 2.3. The vector U
[n]
:m contains all the necessary

information around abundance wnm for this calculation. The total variance is simply the
sum of all Snm. Thus S =

∑N
n=1

∑M
m=1 Snm.

w0,m

...

wn−H,m

wn−1,m

wn,m

wn+1,m

wn+H,m

...

wN,m

Figure 2.3: A 5× 5 grid composed of endmember abundances for band m. The central 5
abundances are the components of U

[n]
:m defined in Eq. 2.20.

2.5.3 New objective function LV S

The proposed new regularized objective function:

LV S(W ,E |X) =
(1− µ)

NB
||X −WET ||2F + µ

[
ν

B
V +

(1− ν)

NM
S

]
(2.21)

where ν acts as a regularization parameter that distributes the regularization between
volume V and spatial information S. Note that we also divide S by N and M , which is
to make it of same magnitude as V .
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2.5.4 Minimization

The fact that we use variance ensures the quadratic form of Sn(W ). This fits nicely into
the existing ICE algorithm.

Derivation of LV S(W )

We start from Eq. 2.21. Since we are using coordinate descent, we focus on solving wn

one at a time, just as we did previously. This time we have S which we need to write as
a function of wn. The exact derivation is given in Appendix A.3.

Sn(wn) =
∑
k∈Kn

wT
nwn

Kk

− 2wT
n

∑
k∈Kn

(U k
ñ:)

T1

Kk(Kk − 1)
+ Cte

(2.22)

The set Kn = {n−H,n− 1, n, n+ 1, n+H} is defined here as the set of all adjacent
numbers of abundance-pixel n, including n itself. Note that cardinality Kk = |Kk| is a
variable and not always equal to 5. Using this result and Eq. 2.21 we can derive Ln,V S
for use in minimization:

Ln,V S(wn) =
(1− µ)

NB
||xn −Ewn||22 +

µ

N

(
ν

B
V +

(1− ν)

M
Sn

)
= Cte −wT

n

[
2

(1− µ)ETxn
NB

+ 2
µ(1− ν)

NM

∑
k∈K

(U k
ñ:)

T1

Kk(Kk − 1)

]

+
1

2
wT
n

[
2

(1− µ)ETE

NB
+ 2

µ(1− ν)

NM

∑
k∈K

IM
Kk

]
wn

= Cte +wT
naS +

1

2
wT
nHSwn

(2.23)

The factor 2/N can be removed since it does not affect the outcome. Now that we
have aS and HS we can use the same minimization technique as for Eq. 2.12 to minimize
it.

2.5.5 Derivation of LV S(E)

There are hardly any changes here compared to Eq. 2.15. S depends on W so it is a
constant and has no effect on E∗. The only thing that gets added to Eq. 2.15 is ν such
that λ = Nµν/[(1− µ)(M − 1)].

2.6 Evaluation

Fig. 2.4 shows how spatial regulation influences the abundance maps. The more spa-
tial regulation we apply through the (1 − ν) hyper-parameter – while holding µν (i.e.
volume regularization) constant – the more smooth the abundances. We do not see any
improvement in endmember estimation, as Fig. 2.4d shows.
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(a) Actual
(b) ICE0.01

(c) ICE0.02 S50%

(d) Endmembers

(e) ICE0.1 S90%

(f) ICE0.5 S98%

Figure 2.4: These images are taken from analysis in Chapter 4, Fig 4.3. Fig. (a) is the real
abundance map. Fig. (b) is estimated with the ICE algorithm using µ = 0.01. Note that
0.01 is suggested by Berman [7] as the optimal parameter based on analysis of various real
datasets. Fig. (c) is estimated with the spatially extended ICE algorithm using µ = 0.02
and ν = 0.5 which results in weight 0.01 for V and 0.50 for S. Fig. (e-f) are similar, where
weight for V is held constant with µν = 0.01. These images are merely to illustrate the
effect of spatial regularization on the abundance maps. Fig. (d) compares the resulting
endmembers (red for ICE0.01, light to dark blue for the amount of regularization S50%,
S90%, S98% respectively while holding µν = 0.01) with the true endmembers (black). The
endmember corresponding with the abundance maps is the bottom left one.

2.7 Conclusion

In this chapter we have seen how the objective function of the ICE algorithm can be
derived from the LMM model using the Likelihood Principle. Subsequently we have
thoroughly analyzed the minimization process of the objective function using coordinate
descent. We made one contribution in this regard by dividing the objective function with
B, thus improving its stability – especially for cases with unnormalized data. We also
calculated the closed form solution for E∗. Subsequently, driven by the idea that there
is some order in abundances maps of materials, we have proposed and implemented a
spatial regularization extension to the ICE algorithm, called ICE-S. This algorithm has
one extra hyper-parameter 1 − ν which controls the spatial regularization. The higher
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we set this parameter, the smoother the abundance maps. The results also show that
this parameter has no significant effect on endmember estimates – compared to the ICE
algorithm under the same volume regularization weight.
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Chapter 3

BayesNMF-Vol algorithm

A common approach to volume-constrained hyperspectral unmixing is to build a regular-
ized objective function (like Lreg in Eq. 2.8) and solve for E∗ by numerical optimization.
Another approach is to build a probability model and treat the extraction of endmembers
E as a Bayesian inference problem. This approach is based on [1], [3] and requires the
definition of a likelihood, priors and most of all, a sound Belief (or Bayesian) Network.

Our primary focus here, like in the previous chapter, is understanding the principles
and limitations of the approach. That means that we go further into details than the
original papers. One essential point that is lacking in the original papers is the definition
of a sound Belief Network. This step is essential because it defines the form of the joint
distribution which in turn allows us to simplify calculations with Bayes rule. That is
why we start this chapter with the definition of a Belief Network that underpins the
BayesNMF-Vol model.

Then, in Section 3.2 we define the likelihood and priors in accordance with the original
papers. We are mainly interested in the maximum a posteriori (MAP) estimators for this
model. One reason is because there is a relationship between the MAP estimators and
the maximum likelihood estimators (MLE) as used in the ICE Algorithm, which in turn
allow direct comparison. We touch briefly on this relationship in Section 3.3.

The need for a posterior distribution calls for more complex MCMC techniques such
as a Gibbs sampler on which we elaborate in Section 3.4. The original papers are ac-
companied with a technical paper [2] in which all the needed conditional distributions are
derived. We refer to those when needed. In other cases where our own derivations differ
(slightly), we put them in the Appendix. This is most notably the case for theW -sampler
in Section 3.4.4 where we are confronted with a degenerate distribution. In Section 3.2.4
we also look into the derivation and implementation of Jeffreys’ prior which is a limiting
case of the Inverse-Gamma distribution.

Lastly, in Section 3.5 we investigate some model peculiarities. The most notable
and somewhat unexpected one is the intrinsic volume regularization of this Bayesian
approach, due to the choice of the W -prior. Several authors [16], [3] have a mathematical
explanation for this phenomenon, while we give a more conceptual one.

3.1 Belief Network for the Bayesian model

We start our model building from the LMM from Section 1.2.1, Eq. 1.3. Since we are
interested in the model parameters E, W and σ2 we can write the posterior using the
Bayes rule:
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f(E,W , σ2|X) =
f(X|E,W , σ2)f(E,W , σ2)

f(X)
(3.1)

The immediate problem that we have here is how to define f(E,W , σ2). The original
papers assume implicitly that f(E,W , σ2) = f(E)f(W )f(σ2) which in turn allows us to
write the joint probability as:

f(X,E,W , σ2) = f(X|E,W , σ2)f(E)f(W )f(σ2) (3.2)

which in turn is equivalent with a directed acyclic graph (DAG) such as the one in Fig.
3.1a in which the Markov property is assumed [4]. Such graphs in the Bayesian framework
are called Belief Networks. They are a convenient tool for describing direct influence and
conditional independence assumptions between different variables. The BayesNMF-Vol
model builds on these assumptions with extra hyper-parameters as depicted in Fig. 3.1b.
According to graphical model theory [4], this DAG corresponds with the following joint
distribution:

f(X,E,W , σ2, α, β, γ)

= f(X|E,W , σ2)f(E|γ)f(W )f(σ2|α, β)f(α)f(β)f(γ)
(3.3)

Specifically, in case of BayesNMF-Vol, the parameters α, β and γ are assumed given
and thus the joint distribution can further be simplified to:

fBayesNMF−V ol(X,E,W , σ2|α, β, γ)

=
f(X,E,W , σ2, α, β, γ)

f(α, β, γ)

= f(X|E,W , σ2)f(E|γ)f(W )f(σ2|α, β)

(3.4)

The last equality is due to f(α, β, γ) = f(α)f(β)f(γ).

X

E
σ2

W

(a) LMM X

E

γ

σ2

α β

W

(b) BayesNMF-Vol

Figure 3.1: (a) Belief Network for the linear mixing model (LMM) as defined in Eq.
1.3. (b) Belief Network for the BayesNMF-Vol algorithm. Note that E, W and σ2 are
assumed directly independent of each other.

3.2 The partial probability density functions

We are now set to define each of the partial density functions in Eq. 3.4. The definitions
are taken from Arngren [1].
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3.2.1 The likelihood fX|E,W ,σ2

Following the LMM data model (cf. Eq. 1.3) we already derived the likelihood in Eq.
2.3. So without falling into repetition we write:

f(X|E,W , σ2) =
N∏
n=1

B∏
b=1

exp
[
− 1

2σ2
(xnb−wT

n eb)
2
]

√
2πσ2

(3.5)

3.2.2 The endmember prior fE|γ

Our first concern with the endmember prior is that it should disallow negative endmember
components. Thus

f(E) ∝
B∏
b=1

M∏
m=1

I [ebm ≥ 0] (3.6)

Our second concern is that the prior should encourage the simplex spanned by the
estimated endmembers to be small. Arngren’s reasoning for this inclusion is because of
the functional equivalence between the MAP and ML estimators as described later in
section 3.3. From this, it appears that the MAP estimator would suffer the same fate as
objective function L from Eq. 2.7. And thus the volume regularization is added:

f(E|γ) ∝ e−γV (E)

B∏
b

M∏
m

I [ebm ≥ 0] (3.7)

Note that the reason for putting the volume V in the exponent is partly due to sampling
reasons: the Gibbs E-sampler is Gaussian in that case (cf. section 3.4.5). Furthermore,
this facilitates the correspondence between the MAP end ML estimators as show in section
3.3.

3.2.3 The abundances prior fW

The minimal requirements – as required by the LMM in Section 1.2.1 – for the abundances
are the non-negativity and sum-to-one constraints. Thus:

f(W ) ∝
N∏
n=1

[
I [‖wn‖1 = 1]

M∏
m=1

I [wnm ≥ 0]

]
(3.8)

Although this prior seems as least informative while incorporating the constraints, we
will see later in Section 3.5.1 that it also prefers smaller endmember simplexes.

Other more complex priors could also be formulated. For example, if we acknowledge
that relatively few endmembers are likely to be mixed in each pixel, then that would lead
us to sparse or highly kurtotic priors for W .

3.2.4 The variance prior fσ2|α,β

The Inverse-Gamma distribution for variance σ2 is an obvious choice since it is conjugate
to the normal distribution.
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f(σ2|α, β) = IG(σ2|α, β)

=
βα

Γ(α)
(σ2)−α−1 exp

(
− β

σ2

)
(3.9)

Arngren [1] notes that as α → 0 and β → 0 the Inverse-Gamma approaches the
Jeffreys prior. Now, why would one use that instead of the uniform distribution? The
uniform distribution, sometimes called the Bayes-Laplace prior, has its roots in Thomas
Bayes stating: “When the probability of a simple event is unknown, we may suppose all
values as equally likely.”

Jeffreys prior on the other hand has a more theoretical foundation [18]. Suppose person
A and person A′ are observing events from a normal distribution but use a different scale
measure sp that the following equality holds: σ′ = cσ where c ∈ R+

0 a constant. Since
their location measure is the same, they end up observing events x and x′ related in
the following way: x′ = c(x − µ) + µ. Assuming they have the same prior information
their prior probabilities are the same: f ′(σ, µ) = f(σ, µ). Assuming further independent
parameters we have f ′(σ) = f(σ). From the change of variables theorem we can further
deduce (cf. Appendix B.1) that f ′(σ′) = f(σ)/c. Combining these results gives the
functional equation cf ′(cσ) = f(σ) which has f(σ) = Cte/σ as the general solution. Note
that this density is improper and is called the Jeffreys prior for scale parameters.

From a practical point of view the results do not differ much between these two priors.
Nonetheless, giving more weight to smaller σ2 values than larger ones seems more logical.
And lastly, since IG is conjugate to N the σ2-sampler is IG instead of a left truncated
N .

Now that we have defined all the constituting probability density functions of the
posterior distribution, we can define the posterior.

3.2.5 The posterior fE,W ,σ2|X,α,β,γ

We derive the posterior:

f(E,W , σ2|X, α, β, γ)

=
fBayesNMF−V ol(X,E,W , σ2|α, β, γ)

f(X|α, β, γ)

=
f(X|E,W , σ2)f(E|γ)f(W )f(σ2|α, β)∫

E

∫
W

∫
σ2 f(X|E,W , σ2)f(E|γ)f(W )f(σ2|α, β) dσ2 dW dE

∝ f(X|E,W , σ2)f(E|γ)f(W )f(σ2|α, β)

∝
N∏
n=1

B∏
b=1

exp
[
− 1

2σ2
(xnb−wT

n eb)
2
]

√
2πσ2

× e−γV (E)

B∏
b=1

M∏
m=1

I [ebm ≥ 0]

×
N∏
n=1

[
I [‖wn‖1 = 1]

M∏
m=1

I [wnm ≥ 0]

]

× βα

Γ(α)
(σ2)−α−1 exp

(
− β

σ2

)

(3.10)
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Note that the integral in the denominator is just a constant.

3.3 Relation between MAP end ICE estimators

Several authors [3], [8] have noted an interesting connection between the geometrical
approaches such as the ICE algorithm and the Bayesian MAP estimator:

(Ê, Ŵ )MAP = arg max
E,W

fE,W (E,W |X, σ2, α, β, γ)

= arg max
E,W

fX(X|E,W , σ2)fE(E|γ)fW (W )

= arg min
E,W

− log fX(X|E,W , σ2)− log fE(E|γ)− log fW (W )

= arg min
E,W

||X −WET ||2F + γV + Cte

(3.11)

which is similar in form to Lreg in Eq. 2.7. In the ICE algorithm, the estimates are
obtained by minimizing a two-term objective function Lreg where − log fX(X|E,W , σ2)
plays the role of a data fitting criterion and − log fE(E|γ)− log fW (W ) of a penalization.
Conversely, from a Bayesian perspective, assigning prior distributions to E and W is a
convenient way to ensure physical constraints inherent to the observation model. Thus
such geometrical algorithms have statistical foundation as Bayesian MAP estimators.

3.4 The BayesNMF-Vol sampler algorithm

3.4.1 Choice of a sampler

Sampling from the posterior is not straightforward. The first difficulty is that we do not
know the exact distribution since the denominator is not known. The Metropolis-Hastings
(MH) algorithm does not require the denominator, and thus is a natural choice. Problem
is the amount of parameters. The MH algorithm is highly dependent on a good proposal
function, without which the acceptance rate is halved with each extra dimension. A viable
solution is a Gibbs sampling approach which allows sampling at univariate level – at the
expense of meticulous calculations.

3.4.2 The Gibbs sampler

The general Gibbs sampling procedure is described in [9]. We use it here to sample (E,
W , σ2) from the posterior fE,W ,σ2|X,α,β,γ. The specific procedure is defined in Algorithm
2. The algorithm generates a Gibbs sequence of random variables ((E(0),W (0), σ2(0)), . . . ,
(E(k),W (k), σ2(k))) that constitute a Markov chain for which the stationary distribution
is the posterior in which we are interested.
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Algorithm 2 (BayesNMF-Vol sampling algorithm)

Initialize E(0) and W (0) in a random feasible way.
for i = 1, 2, . . . to k do
σ
2(i)
1 ∼ fσ2(σ2|E(i−1),W (i−1),X, α, β, γ)

w
(i)
11 ∼ fW (w11|σ2(i)

1 ,E(i−1), w
(i−1)
12 , . . . , w

(i−1)
NM ,X, α, β, γ)

...
w

(i)
NM ∼ fW (wNM |σ2(i)

1 ,E(i−1), w
(i)
11 , . . . , w

(i)
NM−1,X, α, β, γ)

e
(i)
11 ∼ fE(e11|σ2(i)

1 ,W (i), e
(i−1)
12 , . . . , e

(i−1)
BM ,X, α, β, γ)

...
e
(i)
BM ∼ fE(eBM |σ2(i)

1 ,W (i), e
(i)
11 , . . . , e

(i)
BM−1,X, α, β, γ)

end for
return (E,W , σ2) as Gibbs sample sequence.

Advantages to the MH algorithm are that we do not need to tune the proposal distri-
bution and we have no inefficiency due to rejected proposals. The downside is that the
Gibbs-progress can be stalled by highly correlated parameters.

In the following sections we derive each of the conditional distributions needed by the
Gibbs sampler and define appropriate ways of sampling. These derivations are based on
the technical paper [2]. In case our own derivations are different or include omitted steps,
we put them into the Appendix.

3.4.3 Sampling σ2

Because we have chosen a conjugate prior for the noise variance, its conditional distribu-
tion has the same functional form as the prior: An Inverse-Gamma.

f(σ2|E,W ,X, α, β, γ)

=
fBayesNMF−V ol(X,E,W , σ2|α, β, γ)∫

σ2 fBayesNMF−V ol(X,E,W , σ2|α, β, γ) dσ2

=
f(X|E,W , σ2)f(σ2|α, β)∫

σ2 f(X|E,W , σ2)f(σ2|α, β) dσ2

= f(σ2|E,W ,X, α, β)

= IG(σ2|ᾱ, β̄)

(3.12)

Note that in the second equation f(E|γ) and f(W ) can be removed from the integral
since they are just constants. Thus fσ2|E,W ,X,α,β is independent of γ given the other
parameters. The Inverse-Gamma parameters, as calculated in [2], are given by

ᾱ = α +
1

2
NB (3.13)

β̄ = β +
1

2
‖X −WET‖2F (3.14)

Parameter ᾱ controls the shape and is constant. The larger it is, the more the density
will shift to 0 and the less variable the outcome. β̄ on the other hand controls the scale
and is directly proportional to the error. The more pixels lie out of the simplex, the larger
it is, and thus the larger the variance.
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Note that ᾱ and β̄ most likely will never be equal to zero even if we set α = 0 and β
= 0 to simulate Jeffreys prior.

3.4.4 Sampling W

f(W |E, σ2,X)

=
N∏
n=1

f(wn|E, σ2,xn)

∝
N∏
n=1

[
N (wn|µn,Σw) I [‖wn‖1 = 1]

M∏
m=1

I [wnm ≥ 0]

] (3.15)

where the parameters are given by

Σ−1w =
ETE

σ2
(3.16)

µn = (ETE)†ETxn (3.17)

The derivation is worked out in Appendix B.3. First note that we can concentrate
on fwn|E,σ2,xn instead of the whole fW |E,σ2,X . Next, note that fwn|E,σ2,xn is multivariate
Gaussian, constrained on a unit-simplex. Fig. 3.2 shows how this probability density
might look like for wn ∈ R2. Note that in this case, the feasible region is a straight line
since the unit-simplex is 1-dimensional.

Figure 3.2: The contours are from N (wn|µn,Σ) with Σ = [0.2, 0.25; 0.25, 0.5], µn =
(0.8, 0.2) and wn ∈ R2. The support of the density fwn|E,σ2,xn is only along the black line.

Sampling from fwn|E,σ2,xn at this stage can be easily done with a MH sampler, using
a uniform Dirichlet proposal. Dirichlet random variables meet the non-negativity as well
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as the sum-to-one constraints and thus the only thing which remains to be checked is
compliance to the Normal density. This way of sampling is very efficient and feasible for
relatively low M .

Removing equality constraint from fwn|E,σ2,xn

A more complex approach is a univariate Gibbs sampler which works for any M . Note
that we can not condition on fwn|E,σ2,xn and go directly for wnm since the sum-to-one
constraint is deterministic, implying Var(wnm|wnm̃) = 0. Our approach is inspired by
Schmidt [23] who describes a general approach of how sampling can be done from a
distribution constrained with any number of equality and inequality constraints. The idea
is to first map the distribution to an affine subspace where the equality constraints hold.
In that subspace the distribution is only truncated (because the inequality constraints
still hold), but not degenerate.

The original papers refer to this novel idea, but do not translate it to the problem at
hand. In this Section we derive the required components while relying on this general
idea.1 Thus we sample y from a reduced but equivalent space through the relationship
wn = Ay + b using

f(y|E, σ2,xn) = N (y|µy,Σy) I [‖y‖1 ≤ 1]
M−1∏
m=1

I [y ≥ 0] (3.18)

where

Σ−1y =
ATETEA

σ2
(3.19)

µy =
(
ATETEA

)−1
ATET [xn −Eb] (3.20)

The specification of A and b with full derivation of these results is given in Appendix
B.4. In this new y-space, the equality constraint does not hold and the density is a mere
truncated Gaussian distribution in which the covariance matrix is much more stable. We
can sample from this distribution using a Gibbs sampler for which the univariate density
fyk|yk̃,E,σ2,xn is derived in Appendix B.5. The downside of this sampler compared to MH
is slower sampling. The upside is that nothing ever gets rejected which results in a visible
improvement in impure endmember detection.

3.4.5 Sampling E

The conditional distribution of the endmembersE arises from the product of the Gaussian
likelihood and the volume penalizing prior.

1We do not base ourselves on the results of Schmidt [23] – only his general idea – because we are not
sure that his resulting inequality constraints match with those that follow from our own derivations. The
general procedure does not seem to account completely for additional inequality constraints that arise
once the mapping is done. This requires further research.
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f(E|W , σ2,X, γ)

=
B∏
b=1

f(eb|W , σ2,xb, γ)

∝
B∏
b=1

[
N (eb|µb,ΣE)

M∏
m=1

I [ebm ≥ 0]

] (3.21)

where the parameters are given by

Σ−1E =
W TW

σ2
+ 2γ

(
IM − 11T/M

M − 1

)
(3.22)

µb =
ΣEW

Txb
σ2

(3.23)

The derivation of the parameters is given in Appendix B.6. We see that feb|W ,σ2,xb,γ

is a multivariate Normal distribution constrained to the positive domain. The density
febm|ebm̃,W ,σ2,xb,γ for use within a Gibbs sampler is derived in Appendix B.7. The results
are different and computationally more efficient, but equivalent to the results in [2].

Concerning the inverse, we have already touched upon a similar issue in Section 2.3.4.
We conclude that it is highly unlikely that ΣE is singular.

3.5 Model peculiarities

3.5.1 Intrinsic regularization of the Bayesian approach

An interesting feat is that the Bayesian approach is inherently regularized. Fig. 3.3
shows that even if γ = 0, the endmember simplex will be stable and never much larger
than the data points. Arngren already noticed this in [1] but had no explanation. Two
years later, in [3], he turns up with a mathematical explanation for one dimension. The
main insight is that we are not so much interested in (Ê, Ŵ )MAP from Eq. 3.11 but
in (êbm)MAP and (ŵnm)MAP ∀n,m, b. Thus we are interested in marginal distributions.
While the MAP estimator of the joint distribution is ill-defined, the MAP estimators of
the components are not! And since we are dealing with indicator functions in priors the
Riemann integration cannot be used, and one must resort to Lebesgue integration to come
up with a closed-form solution. Arngren [3] does this for one dimension.
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(a) (b)

Figure 3.3: Data for (a) is simulated as a 2-band 9×9 image with SNRdB =
15 dB. The MAP endmember estimates are shown from green to red for γ =
{0, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 140, 1000}. The estimates are based on 3000 sam-
ples with 500 burn-in. The estimates are stable until we reach γ = 140. For γ = 150 and
above the endmember approximations become multi-modal, as the trace in (b) shows for
e11. Once the simplex reaches minimal size, the MAP estimators become stable again.

We can understand this intrinsic regularization conceptually by looking at the prior
for W in Eq. 3.8. The key for understanding is seeing that this prior conveys more
information than just the non-negativity and sum-to-one constraints. It also says that
each wnm that satisfies the constraints is equally likely. In Fig. 3.4 we have two endmember
simplexes for the same dataset. Given E, for the left figure the abundances wnm are
uniformly distributed. But for the right figure, all the abundances wnm are around 0.35.
Our prior on W will thus favor the left simplex.

(a) (b)

Figure 3.4: Simplex in (a) is the MAP estimate for E with γ = 0 such that all wnm are
equally likely. Simplex in (b) on the other hand is such that most wnm fall within the
0.3-0.4 range.
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3.6 Conclusion

In this chapter we defined the Bayesian framework for the LMM model using a DAG
with the Markov property. Under these assumptions we defined the priors for E, W
and σ2 as uninformative as possible, while fulfilling the requirements of the LMM. For
E and W this resulted in improper priors only asserting non-negativity and sum-to-
zero constraints through indicator functions. A volume regularization on E was also
made possible through the E-prior, controlled by the hyper-parameter γ. For σ2 we
used the Jeffreys prior for scale parameters. We derived it and showed how it can be
implemented as the limiting case of the Inverse-Gamma distribution. Furthermore, we
showed how the MAP estimators of this model are related to the ICE estimators. We
further went into greater detail than the original papers in deriving all the necessary
conditional distributions for the Gibbs sampling procedure. Notable here is the sampling
procedure from a degenerate distribution described in Section 3.4.4. We first mapped this
distribution to a subspace in which the equality constraints hold, and sampled from that
subspace. Then we back-transformed the samples to the original space.

The simulation results from Section 3.5.1 indicate that the Bayesian model is intrin-
sically volume-regularized and thus that γ can safely be set to zero. We explained the
reason for this conceptually and referred to some mathematical proofs in other papers.
We also noted that although the MAP estimator is ill-defined for the whole distribution,
it is not once we consider the marginals (êbm)MAP and (ŵnm)MAP . It is not always clear
from these papers if, and how, (Ê, Ŵ )MAP are computed. In subsequent chapters we will
use the marginal MAP estimators. Let us now turn to some real data examples.
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Chapter 4

Synthetic data

4.1 Image generation procedure

For simulating hyperspectral images we have three parameters to play with: the number
of pixels N , the number of endmembers M and the number of bands B. Also, the image
content (i.e. the ordening of the pixels) can be adjusted.

We confine ourselves to the 50×50-pixel image (N = 2500) in Fig. 4.1. For representa-
tional clarity we use only B = 2 bands and M = 3 synthetic endmembers as shown in Fig.
4.3d. The 3 abundance maps shown in Fig. 4.3a-c were generated using Markov Random
Fields (MRF) with Matern covariance function. Once mixed with the endmembers, they
result in Fig. 4.1a. Then we add SNRdB = 15 dB Gaussian noise which results in Fig.
4.1b.1

(a) No noise (b) SNRdB = 15 dB

Figure 4.1: False color synthetic image with (a) and without (b) noise. The two bands
are represented as red and green.

In the following section we run the ICE, ICE-S and BayesNMF-Vol algorithms on the
synthetic image and compare the estimated endmembers and abundance maps with the
originals. Then we select an appropriate error metric for the endmembers. And in the
subsequent section we explore the whole parameter space of the three models to find the
optimal parameters.

1Clark [10] reports AVIRIS data exceeding SNR of 500 at most wavelengths. This corresponds with
SNRdB = 10 log10 500 ∼ 27 dB for real data.
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4.2 Analysis

ICE, ICE-S and BayesNMF-Vol algorithms were run to extract the endmembers and
abundance maps. For ICE and ICE-S we use the threshold 0.9999 of the ratio between
the current and the previous outcome of objective function as the stopping criterion.
For BayesNMF-Vol algorithm we use 3000 samples with 500 samples as burn-in. To
make the comparison between BayesNMF-Vol and ICE algorithms meaningful to some
degree, we use the MAP point estimators in the Bayesian setting. We extract them from
the MC samples using the kernel density estimation technique with Gaussian kernel as
implemented in the R density() function.

The resulting endmembers and abundance maps are shown in Fig. 4.3 for comparison.
The image can be split in three groups. The first group is the first row which consists
of original abundance maps and endmembers. The three subsequent rows comprise the
second group consisting of ICE, ICE-S and BayesNMF-Vol estimates with suggested pa-
rameters. For the ICE algorithm we use µ = 0.01 as suggested by Berman [7]. For ICE-S
we chose 98 % spatial regularization with same volume regularization as ICE, mainly to
contrast the smoothing effect with ICE. For BayesNMF-Vol we set the parameter γ = 0
to show the intrinsic regularization. The last group consists of two last rows of ICE and
ICE-S estimates with optimal parameters which are found in the next section.

Overall we see similar endmember estimates for ICE and ICE-S algorithms. As long as
the volume regularization is kept the same, spatial regularization can be used to smoothen
the abundance maps without changing the endmember estimates much.

4.3 Evaluation

Now that we have the endmembers and abundance maps, we want an objective means to
compare them with the real ones as a way of evaluating the algorithms. For that we first
need to select an error measure.

4.3.1 Error metric selection

We are mainly interested in endmember identification here. So an obvious measure can-
didate is the mean squared error (MSE). The problem with this measure is that it is
dependent on variations in albedo (i.e. the brightness or gain factor) of the spectra [15].
Variations in albedo can occur due to different topographic illumination effects, different
device calibration, etc. A more appropriate measure would be one that is only dependent
on the shape of the spectra, but not on albedo. Such a measure is the spectral angle
mapper (SAM) [19]. This method quantifies the similarity between spectra by calculating
the ”angle” between them using the following formula:

αSAM = cos−1
[

erefetest
‖eref‖‖etest‖

]
(4.1)

This measure will not change for eref and etest when etest is multiplied with some
c ∈ R+

0 and thus the measure is insensitive to albedo. Further more, when eref = etest
– and for any cetest – this measure will result in 0. For a more in-depth discussion of
this measure, and a comparison with a variant of a MSE-based measure, one can consult
Dennison [15].
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4.3.2 Results

Fig. 4.2 gives an overview of SAM values in function of the parameters µ, ν and γ for
ICE, ICE-S and BayesNMF-Vol algorithms respectively on the above mentioned synthetic
image. A few noteworthy things are visible in these graphs. The ICE algorithm seems
to have only one global minimum for µ down to µ = 0.005. Thereafter seem to be lots
of local minima in which the algorithm gets stuck. The optimal and least variable µ
seems to be around 0.005. For ICE-S, the more noise we see in the Fig. 4.2b heat map,
the more local minima there are in that region. Best parameters are the ones with least
local minima, and the smallest SAM value. We estimate that subjectively to be around
µ = 0.0015 and ν = 0.55. For the BayesNMF-Vol, the parameter γ does not play a mayor
role in interval ]− inf, 100].

(a) ICE (b) ICE-S

(c) BayesNMF-Vol

Parameters Error metric
µ ν γ SAM

ICE 0.005 - - 0.22
ICE-S 0.0015 0.55 - 0.25
BayesNMF-Vol - - 0 0.38

(d) Best parameters subjectively selected from
Fig. (a-c) and the corresponding SAM values.

Figure 4.2: Figures (a-c) show SAM values in function of the model hyper-parameters.
The ICE algorithm was run 5 × 150 times for different values of µ. The ICE-S algorithm
was run 35 × 35 times for different values of µ and ν. The BayesNMF-vol algorithm was
run 5 × 150 times for different values of γ. At each run the initialization was different so
that in case of the ICE algorithm, the minima differ. The red curve in (a) is a quadratic
LOESS curve. The runs are based on the aforementioned synthetic image.

Based on these SAM values we conclude that ICE and ICE-S perform similarly. For the
used parametrization, ICE gives us the best SAM value of 0.22. Note though that SAM
values can go down as far as 0.03 for ICE-S, but these minima all seem local. There are
also seemingly stable regions where SAM of 0.20 is attained. But due to large parameter
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space and the slowness of the algorithm it is difficult to pinpoint them. The generation
of Fig. 4.2b which consists of 35×35 points took 10 days on two physical processor cores.

4.4 Conclusion

We have constructed a synthetic image based on 2 bands and 3 endmembers. We have
further run ICE, ICE-S and BayesNMF-Vol on the synthetic image using a wide range of
hyper-parameter configurations. We have compared the estimated endmembers with the
original ones using the SAM metric. We conclude that although ICE-S was able to produce
the least SAM errors, they all seemed to be local minima. In the SAM range around 0.20-
0.30 both ICE and ICE-S were stable and performed similarly. Spatial regularization of
ICE-S can be used to smoothen the abundance maps while keeping similar endmember
estimates as of ICE, as long as the same volume regularization is used for both algorithms.
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(a) Actual W:1 (b) Actual W:2 (c) Actual W:3 (d) Actual E

(e) ICE0.01 Ŵ:1 (f) ICE0.01 Ŵ:2 (g) ICE0.01 Ŵ:3 (h) ICE0.01 Ê

(i) ICE0.5 S98% Ŵ:1 (j) ICE0.5 S98% Ŵ:2 (k) ICE0.5 S98% Ŵ:3 (l) ICE0.5 S98% Ê

(m) Bayes0 Ŵ:1 (n) Bayes0 Ŵ:2 (o) Bayes0 Ŵ:3 (p) Bayes0 Ê

(q) ICE0.005 Ŵ:1 (r) ICE0.005 Ŵ:2 (s) ICE0.005 Ŵ:3 (t) ICE0.005 Ê

(u) ICE0.0015 S45% Ŵ:1 (v) ICE0.0015 S45% Ŵ:2 (w) ICE0.0015 S45% Ŵ:3 (x) ICE0.0015 S45% Ê

Figure 4.3: Endmembers and abundance maps of the synthetic image for ICE, ICE-S and
BayesNMF-Vol. The subscript for ICE is the µ hyper-parameter and the percentage for
S is related to the 1− ν hyper-parameter. The Bayes subscript is the γ hyper-parameter.
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Chapter 5

Real AVIRIS data - Cuprite

This chapter illustrates the discussed algorithms on a real hyperspectral dataset. This
real dataset was acquired over Cuprite Hills (Navada, USA) in 1995 by the NASA/JPL
“Airborne Visual and Infra-Red Imaging Spectrometer” (AVIRIS). The instrument was
flown in an ER-2 aircraft (a modified U-2 spy plane) at 20 km. The spacing between pixels
is 15 m, and the size of each pixel is about 18 m. With 224 bands, a spectral sampling
and bandpass of ∼ 10 nm and signal-to-noise ratios exceeding 500 at most wavelengths,
AVIRIS data are widely used for terrestrial remote sensing. This dataset is freely available
[14].

In the first section we explain hyperspectral data preprocessing and apply it to the
AVIRIS data. The second section is devoted to the selection of the appropriate “alunite
hill” scene for data analysis. In subsequent Section 5.3 we run the ICE, ICE-S and
BayesNMF-Vol algorithms on the selected scene. We summarize our results in Section
5.4.

5.1 Preprocessing AVIRIS data

This Section is mainly based on the Preprocessing AVIRIS Data Tutorial1. The prepro-
cessing of the data can be seen as a 3 step process.

5.1.1 Raw data

First we have the raw quantized pixel data as acquired by the sensor. NASA/JPL always
processes the AVIRIS data to remove geometric and radiometric errors associated with
the motion of the aircraft used during data collection.

5.1.2 Radiance data

Radiance is the amount of radiation coming from an area. Due to the variance in band-
sensitivity of the sensor, the raw data has to be calibrated to compensate this variability.
This is done by multiplying the raw data by a series of gain values, one for each band
resulting in W/(cm2 ∗ sr ∗ nm).

Radiance image includes the radiation effects of the sun. In fact, the spectrum of a
radiance pixel closely matches that of the solar irradiance curve, i.e. the solar spectrum.

1http://www.harrisgeospatial.com/portals/0/pdfs/envi/PreprocessAVIRIS.pdf
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Besides, atmospheric gas absorptions also cause specific irregularities in the spectrum, as
shown in Fig. 5.1.

(a) Radiance map (b) Top left pixel spectrum

Figure 5.1: Left (a) is the false color Cuprite radiance image as obtained from [14]. The x
and y axis denote the coordinates of each pixel from the original ENVI data which is much
larger. For the RGB colors, the wavelengths 753.1287 nm, 530.8180 nm and 482.1898 nm
were taken with intensities of each band normalized with the maximal band value. The
right image (b) is the radiance spectrum of the top left pixel. The shape of the solar
irradiance is clearly visible, and so are the water vapor and CO2 absorptions.

For hyperspectral data analysis, one removes the effects of solar irradiance and atmo-
sphere by calibrating the data to reflectance.

5.1.3 Reflectance data

Reflectance is the proportion of the radiation reflected off a surface to the radiation striking
it. In hyperspectral data analysis, materials are identified by their reflectance spectra.
So calibrating the data to reflectance is an important step towards identifying materials
from an image. An atmospheric correction tool can remove the effects of atmospheric
scattering and gas absorptions, to produce reflectance data as shown in Fig. 5.2.
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(a) Radiance (b) Reflectance

Figure 5.2: The left image (a) is the radiance spectrum of the top-left pixel (cf. Fig. 5.1b).
The right image (b) shows the same spectrum processed by a atmospheric correction tool
to produce the reflectance spectrum.

Note that the imagery may still have variations in illumination due to topography
after this step.

5.1.4 Data cleanup

There can be some irregularity in the reflectance data caused by the atmospheric correc-
tion tool, mostly around the absorption bands. Fig. 5.3 depicts the intensity distribution
in function of the band which clearly shows outlying values around the absorption wave-
lengths. 27 bands in total have been removed due to negative, outlying or noisy values,
resulting in 197 remaining bands.

(a) Unclean data (b) Clean data

Figure 5.3: Plot (a) shows the 5th, 16th, 50th, 84th and 95th percentile per band of the un-
cleaned data. Plot (b) shows the same data, but with bands 366−385 nm, 1363−1413 nm
and 1821−1918 nm removed due to negative or zero values and bands 1811 nm and
1928 nm removed due to extreme outlying values. The last tree bands 2477−2497 nm
have also been removed due to seemingly high noise (cf. [20]).
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5.2 Scene selection

The three algorithms have been evaluated on the “alunite hill” that appears in the Cuprite
scene as depicted in Fig. 5.4. The geological properties of this area have been extensively
investigated by geologists in [10], and [11]. The results of these studies are summarized
in Fig. 5.5. The endmembers are dominated by three materials: muscovite, alunite, and
kaolinite. They allow us to assess, at least subjectively, the accuracy of the three models.

Figure 5.4: Left is the false color Cuprite reflectance image as obtained form [14]. Right is
the zoomed in area of the “alunite hill” (16 x 28 pixels) used for material analysis. False
colors are generated as described in Fig. 5.2.

5.3 Analysis

The 16 x 28 subimage with 197 bands, depicted in Fig. 5.4, has been unmixed using the
ICE, ICE-S and BayesNMF-Vol algorithms using the same parameters as in the previous
chapter. To assess the performance of the algorithms we need reference endmembers and
abundance maps.

We compare the predicted endmembers with the reference spectra from the USGS li-
brary [12]. The problem that arises immediately is the correct choice of reference material.
The original papers [10] and [11] from which Fig. 5.5 is taken are not very clear on which
exact reference sample is used for matching. For example the are 17 different Kaolinite
mineral samples and 23 Kaolinite mixtures in the library, and choosing the corresponding
”Kaolinite + smectite or muscovite” reference sample is not evident. The reference sam-
ples we have chosen as reference endmembers are all collected at the Cuprite scene, have

48



B or higher purity level (i.e. have slight impurities) and are analyzed with the 2151-band
ASD Fieldspec spectrometer. These are CU-98-5C (Alunite), CU91-252D (Muscovite)
and CU91-200A (Kaolinite). These reference endmember spectra are depicted in Fig.
5.7d.

Once we have selected the reference endmembers for performance tests, we also need
the reference abundance maps. For this we use the modified ICE algorithm with µ = 0.01
and E fixed to the aforementioned USGS endmembers. We introduce a new parameter
a ∈ RM which we interpret as the gain factor for each endmember. This is needed since
spectra of materials measured remotely are almost always much weaker than those of pure
reference materials. Minimizing the objective function of the ICE algorithm results in Ŵ
and â. The reference abundance maps are depicted in Fig. 5.7a-c.

5.4 Results

The resulting endmembers and abundance maps are shown in Fig. 5.7. A summary of
the SAM errors is given in Table 5.6. Do note that these error measures are here for the
sake of completeness and do not reflect performance correctly.2

Both ICE and ICE-S perform similarly here given the same volume regularization. For
high volume regularization, the algorithm assumes more pure endmembers, which results
in higher contrast abundance maps. The unregularized BayesNMF-Vol seems to perform
badly. Volume regularization seems to have a large effect here – in contrast to our tests
with the synthetic image.

Parameters Error metric
µ ν γ SAM

ICE 0.01 - - 0.41
ICE-S 0.5 0.02 - 0.43
BayesNMF-Vol - - 0 0.92
ICE 0.005 - - 0.36
ICE-S 0.0015 0.55 - 0.37
BayesNMF-Vol - - 0.001 0.43

Figure 5.6: SAM comparison for different parameter configurations.

2First, there is the uncertainty about the real endmembers in the image. As already noted, the spectra
of reference materials is taken from small samples in labs within a controlled environment, while we are
using spectra of some 18 m2 of rock from an altitude of 20 km.

Second, the identification of materials based on (endmember) spectra is a topic on its own. Clark [11]
notes that trusting in the least-squares matching algorithms as a form of similarity between reference
and unknown is far from sufficient. Materials can be spectrally similar but chemically very different.
Although not completely identical, they are similar enough “that noise and natural variations in field
spectra make the assignment of the proper threshold at which to define identification or misidentification
problematic.” So simple measures like MSE (and even SAM) might be deceiving.

In short, assessing the accuracy of the estimated endmembers would require an experienced geolo-
gist/spectroscopist with a specific methodology. USGS Tetracorder [11] is an expert system that tries to
mimic that methodology. Unfortunately, explaining and assessing the estimated endmembers with such
a methodology would require a thesis on its own.
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5.5 Conclusion

In this chapter we analyzed the “alunite hill” that appears in the AVIRIS Cuprite scene.
For reference endmembers we based ourselves on geological work in the area and the USGS
library. The reference abundance maps we extracted using a modified ICE algorithm based
on the selected reference spectra. The SAM error results rate the ICE algorithm with
µ = 0.005 as the best performer.
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Figure 5.5: The image is taken from [11] with the “alunite hill” (16 × 28 pixels) zoomed
in at the bottom right for clarity. The materials are identified using the USGS spectral
library and Tetracoder’s least squares shape-matching algorithm. According to [11] “min-
eral maps such as these have been extensively field checked to confirm the accuracy of the
algorithm”. Note that the surroundings (blue) are mostly high-Al muscovite. The hill
edges are mainly kaolinite mixed with muscovite (cyan) and/or alunite (olive green), to
mainly K-Alunite (250C - medium temperature) towards the center (orange).
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(a) Actual Alunite (b) Actual Muscovite (c) Actual Kaolinite (d) USGS Spectra

(e) ICE0.01 Ŵ:1 (f) ICE0.01 Ŵ:2 (g) ICE0.01 Ŵ:3 (h) ICE0.01 Ê

(i) ICE0.5 S98% Ŵ:1 (j) ICE0.5 S98% Ŵ:2 (k) ICE0.5 S98% Ŵ:3 (l) ICE0.5 S98% Ê

(m) Bayes0 Ŵ:1 (n) Bayes0 Ŵ:2 (o) Bayes0 Ŵ:3 (p) Bayes0 Ê

(q) ICE0.005 Ŵ:1 (r) ICE0.005 Ŵ:2 (s) ICE0.005 Ŵ:3 (t) ICE0.005 Ê

(u) ICE0.0015 S45% Ŵ:1 (v) ICE0.0015 S45% Ŵ:2 (w) ICE0.0015 S45% Ŵ:3 (x) ICE0.0015 S45% Ê

(y) Bayes0.001 Ŵ:1 (z) Bayes0.001 Ŵ:2 (aa) Bayes0.001 Ŵ:3 (ab) Bayes0.001 Ê

Figure 5.7: The algorithms and parameters used here are the same as in Fig. 4.2. The
endmembers are Alunite (black), Muscovite (red) and Kaolinite (blue).52



Chapter 6

Conclusion

In this thesis we explained how hyperspectral images are made and their main charac-
teristic, the large amount of spectral bands. We defined a linear mixing model (LMM)
which was driven by the idea that due to low spatial resolution of a hyperspectral sensor,
spectra of many materials are mixed within each pixel. The LMM allows us to do the
inverse step in a mathematically sound way: extract the material spectra from each pixel
spectrum. For a whole hyperspectral image, this results in a few constituting materials
– of which the spectra are called endmembers – and abundance maps of these materials.
The process is called hyperspectral unmixing.

We briefly discussed three kinds of approaches to hyperspectral unmixing: geometri-
cal, statistical and sparse. In this thesis we focused on Berman’s ICE algorithm which is
typifying for the geometrical approach. We also focused on one of the first Bayesian ap-
proaches, called Arngren’s BayesNMF-Vol algorithm. Since the Bayesian approaches are
currently a hot topic, we also sketched the complexity of some state-of-the-art approaches
compared to the one described in this thesis.

Our first focus was the ICE algorithm. We first discussed the objective function
derivation and implementation details since the original papers are quite succinct on that
part. This resulted in small improvements such as the closed form solution for E∗ and a
stability improvement of the objective function by dividing it with the number of bands
B. Subsequently we added spatial regularization to the ICE algorithm. We dubbed
this the ICE-S algorithm. Spatial regularization favors structure in abundance maps,
while disfavoring randomness. The synthetic and real data experiments showed clearly
the smoothing effect of ICE-S, but were not able to show any difference in endmember
estimates – compared to the ICE algorithm under the same volume regularization.

Our second focus was the BayesNMF-Vol algorithm. In a similar way as for the
ICE algorithm, we analyzed the assumptions and implementation details in much greater
detail than the original papers. We showed how the assumption of a DAG is essential
for deriving the conditional distributions used by the Gibbs sampler. We also showed
in full detail how sampling from a degenerate distribution can be done – something that
proved quite challenging but was only mentioned as a side note in the original papers. We
also explained the relationship between the Bayesian MAP estimators and ICE estimators.
This led us to believe that the two algorithms are similar, and that the Bayesian approach
should also be volume-regularized. The latter was proven wrong for at least two reasons.
For one, due to high dimensionality one does not focus on the joint MAP estimator, but
on the marginal MAP estimators. Second, because the Bayesian approach is intrinsically
volume-regularized due to the “uninformative” prior for the abundances.
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The ICE, ICE-S and BayesNMF-Vol algorithms were tested on both a synthetic and a
real image. ICE-S was able to produce the best endmembers on the synthetic data once the
hyper-parameters were optimized. This was expected because of the extra parameter (and
thus an extra degree of freedom). But the values were very dependent on the initialization
values. So much in fact that the outcomes were rather unreliable. We visualized this
uncertainty by sampling SAM values over the whole hyper-parameter space. Overall we
feel that the ICE and ICE-S perform similarly under the same volume regularization. The
spatial regularization can be used in such cases to smoothen the abundance maps. On real
data with Berman’s suggested parametrization the ICE algorithm proved best. What we
noticed almost consistently during our tests is the bad performance of the BayesNMF-Vol
algorithm when not using volume regularization. A small volume regularization often
helps the algorithm to achieve (much) better results, especially in higher dimensions.

This thesis is accompanied by a framework in R for hyperspectral analysis based
on the hyperSpec package. Together with the implementation of the three algorithms,
various functions were made for random image generation, false-color-, abundance- and
endmember-plotting, parallel hyper-parameter optimization and USGS library spectra
extraction – among others – to streamline the analysis process. Lots remains to be done.
The research of hyperspectral unmixing is a never ending endeavor, mainly because of
underspecification. But the framework can be used as a good starting point for anyone
who wishes to start implementing new unmixing algorithms in R.
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Appendix A

ICE appendix

A.1 Relation between V and SSD

This is used in Eq. 2.9. Berman [5] notes these equivalent relations, but never derives
them. We start from the sum of variance of eb and show that it is proportional to the
sum of squared distances (SSD) or rewrite it in matrix form which can be used in Eq.
2.13 to solve for E∗.

V =
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(A.1)
From here we can either go towards SSD:
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Or we can rewrite it in function of eb:

V =

∑B
b=1

[
MeTb eb − eTb 11Teb

]
M(M − 1)

=
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b=1

eTb (IM − 11T

M
)eb
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(A.3)

A.2 Minimum of Lreg(E) given W

This is the solution for the minimization of Eq. 2.3.4 using differential calculus [21]. We
start by calculating the differential. Then we massage it into canonical form dLreg(E) =
tr(ATdE) from which we deduce that DLreg(E) = AT . Once we know the derivative we
can set it equal to 0 and solve for E.

dLreg(E) = d
(1− µ)

N
tr
[
(X −WET )T (X −WET )

]
+ d
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tr
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(A.4)

where λ = Nµ/[(1 − µ)(M − 1)]. We reduced dLreg(E) to the canonical form from
which we deduce that DLreg(E) = AT . Now we can solve AT = 0 for E∗:

arg min
E

Lreg(E) = XTW
[
W TW + λ(IM − 11T/M)

]−1
(A.5)
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A.3 Derivation of Sn(wn)

We use here the definitions from Section 2.5. We further define l as the rows of U [n]

corresponding to the elements in Kn.
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∑
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Appendix B

BayesNMF-Vol appendix

B.1 Density of linearly transformed variable

This is the deduction of the not so trivial step in Section 3.2.4. We have the linear
transformation of σ′ = φ(σ) = cσ. We further assume that σ ∼ f(σ). We are looking for
f ′(σ′). We start by writing the probability

P (σ′ < a) =

∫ a

0

f ′(σ′) dσ′

=

∫ φ−1(a)

0

f(σ) dσ

=

∫ a

0

f(φ−1(σ′))
dφ−1(σ′)

dσ′
dσ′

=

∫ a

0

f(φ−1(σ′))
1

c
dσ′

(B.1)

where we use integration by substitution in the second last equation. Thus we have
that f ′(σ′) = f(φ−1(σ′))/c = f(σ)/c.

B.2 Derivation of N (xk|xk̃, µ̂k, σ̂
2
k) from N (x|µ,Σ)

This form is mainly useful for the Gibbs sampler where we wish to sample xk from x, one
at a time. Suppose that x ∼ N (x|µ,Σ) and that Σ−1 = (σij).
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[
−1

2

(
σkkx

2
k + xkΣ

−1
k:k̃
yk̃ + xk(Σ

−1
k̃:k

)Tyk̃ − 2xkΣ
−1
k: µ

)]

= Cte
3 exp

−1

2

(
x2k − 2{Σ−1k: µ−Σ−1

k:k̃
yk̃/2− (Σ−1

k̃:k
)Tyk̃/2}σ

−1
kk xk

)
σ−1kk


= Cte

4 exp

−1

2

(
xk −

{
Σ−1k: µ− 1

2

[
Σ−1
k:k̃

+ (Σ−1
k̃:k

)T
]
yk̃

}
σ−1kk

)2
σ−1kk


= Cte

4 exp

−1

2

(
xk −

{
Σ−1k: µ−Σ−1

k:k̃
yk̃

}
σ−1kk

)2
σ−1kk


= N (xk|µ̂k, σ̂2

k)

(B.2)

The second to last equality follows from the fact that Σ is symmetric. From the above
we conclude that

σ̂2
k =

(
Σ−1kk

)−1
(B.3)

µ̂k =
Σ−1k: µ−Σ−1

k:k̃
yk̃

Σ−1kk
(B.4)

B.3 Derivation of fW |E,σ2,X

These results are used in Section 3.4.4.
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f(W |E, σ2,X, α, β, γ)

=
fBayesNMF−V ol(X,E,W , σ2|α, β, γ)∫

W
fBayesNMF−V ol(X,E,W , σ2|α, β, γ) dW

=
f(X|E,W , σ2)f(W )∫

W
f(X|E,W , σ2)f(W ) dW

= f(W |E, σ2,X)

∝
N∏
n=1

[
N (xn|Ewn, σ

2) I [‖wn‖1 = 1]
M∏
m=1

I [wnm ≥ 0]

]

∝
N∏
n=1

[
N (wn|µn,Σw) I [‖wn‖1 = 1]

M∏
m=1

I [wnm ≥ 0]

]

∝
N∏
n=1

f(wn|E, σ2,xn)

(B.5)

Normal density function fwn|E,σ2,xn from Eq. B.5 must be rewritten in function of wn.
Thus we equate

N (xn|Ewn, σ
2) =

exp
[
−1

2
(xn −Ewn)T (σ2I)−1(xn −Ewn)

]√
|2πσ2I|

∝
exp

[
−1

2
(wn − µn)TΣ−1w (wn − µn)

]√
|2πΣw|

= N (wn|µn,Σw)

(B.6)

from which we get parameters µn and Σ.

Σ−1w =
ETE

σ2
(B.7)

µn = (ETE)†ETxn (B.8)

The same derivation approach is used in [2].

B.4 Mapping fwn|E,σ2,xn to fy|E,σ2,xn

This is the mapping from the de wn-space to the y-subspace in which the equality con-
straint |wn| = 1 holds, as initiated in Section. 3.4.4. We first introduce a transformed
variable y which relates to wn in the following way:

1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−1 −1 −1 · · · −1




y1
y2

...
yM−1

+


0
0
...
0
1

 =


wn1
wn1

...
wnM−1
wnM

 (B.9)

We write this in a more concise way as:
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Ay + b = wn (B.10)

Now we can use this equality to derive a distribution of y based on fwn|E,σ2,xn :

f(y|E, σ2,xn)

= f(Ay + b|E, σ2,xn)

= N (Ay + b|µn,Σw) I [‖Ay + b‖1 = 1]
M∏
m=1

I [(Ay + b)m ≥ 0]

= N (Ay + b|µn,Σw)
M∏
m=1

I [(Ay + b)m ≥ 0]

= N (Ay + b|µn,Σw) I [‖y‖1 ≤ 1]
M−1∏
m=1

I [ym ≥ 0]

= N (y|µy,Σy) I [‖y‖1 ≤ 1]
M−1∏
m=1

I [ym ≥ 0]

(B.11)

where

Σ−1y = ATΣ−1w A =
ATETEA

σ2
(B.12)

µy = ΣyA
TΣ−1w (µn − b)

=
(
ATETEA

)−1
ATETE

[
(ETE)+ETxn − b

]
=
(
ATETEA

)−1
ATET [xn −Eb]

(B.13)

To get rid of the MP inverse we use the equality (ATA)†AT = A† and ATAA† = AT

which holds for any matrix A (cf. [21, p.38]).
The (M − 1,M − 1) matrix ATETEA is nonsingular ⇐⇒ columns of EA are

independent ⇐⇒ rank (EA) = M − 1 ⇐⇒ ker(EA) = {x : Ax ∈ kerE} = {0}.
Knowing that rank (EA) ≤ min(rank(E),M − 1) ≤ min(B,M − 1) the matrix will
certainly be singular if B < M − 1. More generally, it will be singular if range(A)
intersects with ker(E) in more than {0}. From our testing, the latter seems to be very
unlikely, thus the matrix can be assumed nonsingular.

B.5 Derivation of fyk|yk̃,E,σ
2,xn for Gibbs sampling

We start from results given in Eq. 3.18.
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f(yk|yk̃,E, σ
2,xn)

=
f(y|E, σ2,xn)∫

yk
f(y|E, σ2,xn) dyk

=
N (y|µy,Σy) I [‖y‖1 ≤ 1]

∏M−1
m=1 I [ym ≥ 0]∏M−1

m6=k I [ym ≥ 0]
∫
yk
N (y|µy,Σy) I [‖y‖1 ≤ 1] I [yk ≥ 0] dyk

=
N (y|µy,Σy) I

[
yk ≤ 1−

∑M−1
m 6=k ym

]
I [yk ≥ 0]∫

yk
N (y|µy,Σy) I [‖y‖1 ≤ 1] I [yk ≥ 0] dyk

= N (yk|µyk, σ2
yk) I

[
yk ≤ 1−

M−1∑
m6=k

ym

]
I [yk ≥ 0]

(B.14)

where the parameters µk and σ2
k we compute from the result in Appendix B.2:

σ2
yk =

[(
Σ−1y

)
kk

]−1
(B.15)

µyk =

(
Σ−1y

)
k:
µy −

(
Σ−1y

)
k:k̃
yk̃

σ−2yk
(B.16)

Note that we are generating a Gibbs sequence for y, so we need previous components
of y. We have wn though, and we can get y by the inverse transformation of Eq. B.10.
Matrix A is a (M × M − 1) matrix. It has no inverse since it is non-square. But it
does have a left inverse A−1Left since its columns are independent and equivalently that the

Gram matrix ATA is non-singular. We use this property to write y in function of wn:

y = (ATA)−1ATAy = A−1LeftAy = A−1Left(wn − b) = wnM̃ (B.17)

Note the last equality. y is just wn with the last component removed!

B.6 Derivation of fE|W ,σ2,X,γ

We start from the results given in Eq. 3.21.
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f(E|W , σ2,X, α, β, γ)

=
fBayesNMF−V ol(X,E,W , σ2|α, β, γ)∫

E
fBayesNMF−V ol(X,E,W , σ2|α, β, γ) dE

=
f(X|E,W , σ2)f(E|γ)∫

E
f(X|E,W , σ2)f(E|γ) dE

= f(E|W , σ2,X, γ)

∝
N∏
n=1

B∏
b=1

exp
[
− 1

2σ2
(xnb−wT

n eb)
2
]

√
2πσ2

e−γV (E)

B∏
b=1

M∏
m=1

I [ebm ≥ 0]

=
N∏
n=1

B∏
b=1

1√
2πσ2

exp

(
− 1

2σ2

(
xnb −wT

neb
)2)

× exp

(
−γ

B∑
b=1

eTb (IM − 11T

M
)eb

M − 1

)
B∏
b=1

M∏
m=1

I [ebm ≥ 0]

=
B∏
b=1

(
1√

2πσ2

)N
exp

(
−1

2

[
(xb −Web)

T (xb −Web)

σ2
+ 2γ

eTb (IM − 11T/M)eb
M − 1

])

×
B∏
b=1

M∏
m=1

I [ebm ≥ 0]

∝
B∏
b=1

[
N (eb|µb,ΣE)

M∏
m=1

I [ebm ≥ 0]

]

∝
B∏
b=1

f(eb|W , σ2,xb, γ)

(B.18)
So we need to equate

(eb−µb)TΣ−1E (eb − µb) + Cte

=
(xb −Web)

T (xb −Web)

σ2
+ 2γ

eTb (IM − 11T/M)eb
M − 1

(B.19)

and solve for eb and Σ−1E where we get:

Σ−1E =
W TW

σ2
+ 2γ

(
IM − 11T/M

M − 1

)
(B.20)

µb =
ΣEW

Txb
σ2

(B.21)

B.7 Derivation of febm|ebm̃,W ,σ2,xb,γ
for Gibbs sampling

The density functions feb|W ,σ2,xb,γ from Eq. B.18 is relatively difficult to sample from. So
we derive febm|ebm̃,W ,σ2,xb,γ which can be used in a Gibbs sampling procedure.
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f(ebm|ebm̃,W , σ2,xb, γ)

=
f(eb|W , σ2,xb, γ)∫

ebm
f(eb|W , σ2,xb, γ) debm

=
N (eb|µb,ΣE)

∏M
i=1 I [ebi ≥ 0]∏M

i 6=m I [ebi ≥ 0]
∫
ebm
N (eb|µb,ΣE)I [ebm ≥ 0] debm

=
N (eb|µb,ΣE)I [ebm ≥ 0]∫

ebm
N (eb|µb,ΣE)I [ebm ≥ 0] debm

= N (ebm|µ̄bm, σ̄2
m)I [ebm ≥ 0]

(B.22)

Using the results from Appendix B.2 we have

µ̄bm =
(Σ−1E )m:µb − (Σ−1E )m:m̃ebm̃

(Σ−1E )mm
(B.23)

σ̄2
m = 1/(Σ−1E )mm (B.24)
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Appendix C

Source code

The R source code is in RMD files. The compiled output is available at http://

josipovic.be/statistics/dissertation/.
All the source code, data, R and its libraries, and output used in this thesis are

compiled and made available at: https://hyperspec-unmix.sourceforge.io. A small
wiki for running the code is available. The source code is composed of RMD files where
each covers a topic on its own. For example, the HyperImage.rmd file has the definition
of the HyperSpecExt object, and functions for false color plotting and plotting of the
abundance maps. The Alg-ICE.rmd has the implementation of the ICE algorithm and
depends on, a.o., the definitions in HyperImage.rmd. This dependence is declared in the
first chunk. This dependence declaration allows Alg-ICE.rmd to be compiled on its own.
The files with ”TEST” suffix, such as Alg-ICE-TEST.rmd, contain some kind of processing
with the aforementioned algorithm. All RMD files are included in the Main.rmd file which,
when compiled with knitr, gives an overview of all the source code and output.

The R library and used packages – most notably the HyperSpec package – are avail-
able in the /r directory. The used Cuprite and USGS data can be found in the /data
directory. These files fall under public license and are made available for convenience and
compatibility.

66



Bibliography

[1] Morten Arngren, Mikkel N. Schmidt, and Jan Larsen. Bayesian nonnegative matrix
factorization with volume prior for unmixing of hyperspectral images. In 2009 IEEE
International Workshop on Machine Learning for Signal Processing, pages 1–6. IEEE,
2009.

[2] Morten Arngren, Mikkel N. Schmidt, and Jan Larsen. Supplementary material for
unmixing of hyperspectral images using Bayesian nonnegative matrix factorization
with volume prior. 2010.

[3] Morten Arngren, Mikkel N. Schmidt, and Jan Larsen. Unmixing of hyperspectral
images using Bayesian non-negative matrix factorization with volume prior. Journal
of Signal Processing Systems, 65(3):479–496, 2011.

[4] David Barber. Bayesian reasoning and machine learning. Cambridge University
Press, 2012.

[5] Mark Berman, Harri Kiiveri, Ryan Lagerstrom, Andreas Ernst, Rob Dunne, and
Jonathan F. Huntington. Ice: an automated statistical approach to identifying end-
members in hyperspectral images. In Geoscience and Remote Sensing Symposium,
2003. IGARSS’03. Proceedings. 2003 IEEE International, volume 1, pages 279–283.
IEEE, 2003.

[6] Mark Berman, Harri Kiiveri, Ryan Lagerstrom, Andreas Ernst, Rob Dunne, and
Jonathan F. Huntington. Ice: A statistical approach to identifying endmembers
in hyperspectral images. IEEE transactions on Geoscience and Remote Sensing,
42(10):2085–2095, 2004.

[7] Mark Berman, Aloke Phatak, Ryan Lagerstrom, and Bayden R. Wood. Ice: a new
method for the multivariate curve resolution of hyperspectral images. Journal of
Chemometrics, 23(2):101–116, 2009.
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